激光与光电子学进展, 2016, 53 (3): 033401, 网络出版: 2016-03-04   

单色X 射线光栅泰伯条纹可见度影响因素模拟研究 下载: 900次

Numerical Investigation on Factors Affecting the Visibility of Monochromatic X-Ray Grating Talbot Self-Imaging Fringes
作者单位
中国工程物理研究院流体物理研究所脉冲功率科学与技术重点实验室, 四川 绵阳 621900
摘要
通过模拟单色X 射线源下硅材料光栅泰伯自成像,研究振幅为均匀和高斯分布、光源尺寸与横向相干长度比值不同的单色扩展光源与金材料源光栅相结合的成像系统中光栅泰伯效应自成像条纹可见度的影响因素。计算结果表明,基于光栅的X 射线相衬成像系统中光栅泰伯自成像条纹可见度主要受成像距离和光源横向相干长度影响,受单色扩展光源的振幅分布和尺寸影响很小。
Abstract
By simulating silicon material grating Talbot self- imaging at the monochromatic X-ray source, the factors that influence visibility of the Talbot self-imaging fringes are researched. The imaging system is combined with gold material source and extended monochromatic light source which distributions are uniform and Gaussian, including different ratios of light source size and lateral spatial coherent length. Simulation results show that for a grating-based X-ray phase-contrast imaging system, the visibility of its Talbot self-imaging fringes is mainly determined by the imaging distance and lateral spatial coherent length of the X-ray sources, but less effected by the source size and its amplitude distribution.
参考文献

[1] Talbot H F. Facts relating to optical science No.IV[J]. Philosophical Magazine Series 3, 1836, 9(56): 401-402.

[2] Ojedacastandea J, Ibarra J, Barreiro J C. Noncoherent Talbot effect: coherence theory and applications[J]. Optics Communications, 1989, 71(3-4): 151-155.

[3] Cheng Y S, Chang R C. Image formation for two-dimensional periodic object using Talbot effect[J]. Optics Communications, 1995, 120(5-6): 335-347.

[4] Sigel C, Loewenthal F, Balmer J E. A wavefront sensor based on the fractional Talbot effect[J]. Optics Communications, 2001, 194(4-6): 265-275.

[5] Winthrop J T, Worthington C R. Theory of Fresnel images I: plane perodic objects in monochromatic light[J]. J Opt Soc Am, 1965, 55(4): 373-381.

[6] Pfeiffer F, Weitkamp T, Bunk O, et al.. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2(4): 258-261.

[7] Momose A, Kawamoto S, Koyama I, et al.. Demonstration of X-ray Talbot interferometry[J]. Japanese Journal of Applied Physics, 2003, 42(7B): L866-L868.

[8] 戚俊成, 任玉琦, 杜国浩, 等. 基于X 射线光栅成像的多衬度显微计算层析系统[J]. 光学学报, 2013, 33(10): 1034001.

    Qi Juncheng, Ren Yuqi, Du Guohao, et al.. Multiple contrast micro-computed tomography system based on X-ray grating imaging[J]. Acta Optica Sinica, 2013, 33(10): 1034001.

[9] 吴朝. X 射线光栅相衬成像中的信息分离以及计算机断层重建[D]. 合肥: 中国科学技术大学, 2014: 33-81.

    Wu Zhao. Information Separation and CT in X-ray Grating-Based Phase Contrast Imaging[D]. Hefei: University of Science and Technology of China, 2014: 33-81.

[10] Huang Zhifeng, Kang Kejun, Zhang Li, et al.. Alternative method for differential phase-contrast imaging with weakly coherent hard x-rays[J]. Physical Review A, 2009, 79(1): 013815.

[11] 李徳娥, 张凯, 朱佩平, 等. X 射线成像技术在昆虫形态学研究中的应用[J]. 生命科学, 2013, 25(8): 771-778.

    Li Dee, Zhang Kai, Zhu Peiping, et al.. The application of X-ray imaging in insect morphological studies[J]. Chinese Bulletin of Life Sciences, 2013, 25(8): 771-778.

[12] 王云新, 王大勇, 杨怡姝, 等. 数字全息技术在生物医学成像和分析中的应用[J]. 中国激光, 2014, 41(2): 0209002.

    Wang Yunxin, Wang Dayong, Yang Yishu, et al.. Application and analysis in the biomedicine field using digital holographic technology[J]. Chinese J Lasers, 2014, 41(2): 0209002.

[13] 方超, 向阳. 十三步光栅横向剪切干涉相位复原算法[J]. 中国激光, 2014, 41(5): 0508003.

    Fang Chao, Xiang Yang. A thirteen-step phase restoration algorithm in lateral shearing interferometry[J]. Chinese J Lasers, 2014, 41(5): 0508003.

[14] Jensen T H, Bottiger A, Bech M, et al.. X-ray phase-contrast tomography of porcine fat and rind[J]. Meat Science, 2011, 88(3): 379-383.

[15] Willner M, Bech M, Herzen J, et al.. Quantitative X-ray phase-contrast computed tomography at 82 keV[J]. Optics Express, 2013, 21(4): 4155-4166.

[16] Malecki A, Potdevin G, Biernath T, et al.. X-ray tensor tomography[J]. Europhysics Letters, 2014, 105(3): 107-110.

[17] 肖体乔, 谢红兰, 邓彪, 等. 上海光源X 射线成像及其应用研究进展[J]. 光学学报, 2014, 34(1): 0100001.

    Xiao Tiqiao, Xie Honglan, Deng Biao, et al.. Progresses of X-ray imaging methodology and its applications at Shanghai synchrotron radiation facility[J]. Acta Optica Sinica, 2014, 34(1): 0100001.

[18] 玻恩, 沃尔夫. 光学原理[M]. 杨葭孙译. 北京: 电子工业出版社, 2009: 342-427.

    Born M, Wolf E. Principles of Optics[M]. Yang Jiasun Transl. Beijing: Publishing House of Electronics Industry, 2009: 342- 427.

[19] Pfeiffer F. Milestones and basic principles of grating-based X-ray and neutron phase-contrast imaging[C]. AIP Conference Proceedings, 2012, 1466: 2-11.

[20] Engel K J, Geller D, Kohler T, et al.. Contrast-to-noise in X-ray differential phase contrast imaging[J]. Nuclear Instruments and Methods in Physics Research Section A, 2011, 648(S1): S202-S207.

[21] Voelz D Z, Roggemann M C. Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences[J]. Applied Optics, 2009, 48(32): 6132-6142.

[22] Thompson A, Attwood D, Gullikson E, et al.. X-Ray Data Booklet[M]. Berkeley: Lawrence Berkeley National Laboratory, 2001: 74-79.

[23] Wang Zhili, Liu Xiaosong, Zhu Peiping, et al.. Analysis of partial coherence in grating-based phase-contrast X-ray imaging [J]. Nuclear Instruments and Methods in Physics Research Section A, 2010, 619(1-3): 319-322.

卢阳沂, 李晶, 黄显宾, 袁建强, 谢卫平. 单色X 射线光栅泰伯条纹可见度影响因素模拟研究[J]. 激光与光电子学进展, 2016, 53(3): 033401. Lu Yangyi, Li Jing, Huang Xianbin, Yuan Jianqiang, Xie Weiping. Numerical Investigation on Factors Affecting the Visibility of Monochromatic X-Ray Grating Talbot Self-Imaging Fringes[J]. Laser & Optoelectronics Progress, 2016, 53(3): 033401.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!