强激光与粒子束, 2011, 23 (6): 1504, 网络出版: 2011-07-04   

常压微波等离子体炬装置的模拟与设计

Numerical modeling and design of atmospheric pressure microwave plasma jet
作者单位
1 中国科学院 等离子体物理研究所, 合肥 230031
2 武汉工程大学 材料科学与工程学院, 等离子体化学与新材料重点实验室, 武汉 430073
3 中国科学院 电工研究所, 北京 100080
摘要
介绍了一台低成本的常压微波等离子体炬设备,给出了该设备构造及喷嘴的设计思路,分析了各种气体的非磁化微波等离子体的击穿电场强度,数值求解了设备中矩形TE103谐振腔中的电磁场分布,应用高频电磁场模拟分析软件HFSS优化了喷嘴在波导中的具体位置,并对优化后喷嘴周围的电场分布进行了模拟。模拟结果表明:微波输入有效功率为500 W,喷嘴伸出矩形波导1 mm时,喷嘴尖端处的电场强度在1.2×106 V·m-1以上,远大于氩气的击穿电场强度,更易于等离子体炬的激发。实验结果证明了模拟结果的正确性和装置的有效性。
Abstract
The advantages of the atmospheric pressure microwave plasma jet(MPJ) over the previous and conventional methods make it a potential system for certain industrial material processes. This paper presents the design of this MPJ, the theoretical consideration of microwave ignition, the optimization of the nozzle and the simulation results, including the distributions of the electric field inside the TE103 rectangular cavity as well as the tip of the nozzle. The results show that when the nozzle length passed through the hole on the cavity wall is 1 mm and the power is 500 W, the electric field strength at the position of tip nozzle is above 1.2×106 V·m-1 which is higher than the breakdown field strength of the working gases. Both simulation result and the observations of the MPJ are in good agreement.
参考文献

[1] Chun Kuchen, Gleiman S, Phillips J. Low-power plasma torch method for the production of crystalline spherical ceramic particles[J]. J. Mater Res, 2001, 16(5): 1256-1265.

[2] Siores E, Rego D D. Microwave applications in materials joining[J]. Journal of Materials Processing Technology, 1995, 48(1): 619-625.

[3] Chan I-M, Cheng Wengcheng, Hong F C. Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surface[J]. Appl Phys Lett, 2002, 80(1): 13-15.

[4] Duan Yixiang, Du Xiaoguang, Li Yimu, et al. Characterization of a modified, low-power argon microwave plasma torch(MPT) as an atomization cell for atomic fluorescence spectrometry[J]. Applied Spectroscopy, 1995, 49(8): 1079-1085.

[5] Hong Y C, Uhm H S. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels[J]. Physics of Plasma, 2006, 13: 113501.

[6] Moisan M, Grenier R, Zakraewski Z. The electromagnetic performance of a surfatron-based coaxial microwave plasma torch[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1995, 50(8): 781-789.

[7] Bilgic A M, Prokisch C, Broekaert J A C, et al. Design and modelling of a modified 2.45 GHz coaxial plasma torch for atomic spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1998, 53(5): 773-777.

[8] Kuo S P, Bivolaru D, Lai H, et al. Characteristics of an arc-seeded microwave plasma torch[J]. IEEE Trans on Plasma Sci, 2004, 32(4): 1734-1741.

[9] Shin D H, Bang C U, Hong Y C, et al. Preparation of vanadium pentoxide powders by microwave plasma torch at atmospheric pressure[J]. Materials Chemistry and Physics, 2006, 99(2/3): 269-275.

[10] 朱兆君,贾宝富,罗正祥,等.微扰实验法测试螺旋线行波管耦合阻抗及模拟仿真[J].强激光与粒子束, 2008, 20(1): 118-122.(Zhu Zhaojun, Jia Baofu, Luo Zhengxiang, et al. Perturbation experiment method for helix traveling-wave tube interaction impedance measurement. High Power Laser and Particle Beams, 2008, 20(1): 118-122)

[11] 张瑞,王勇.TM610高次模圆柱谐振腔的模拟研究[J].强激光与粒子束, 2006, 18(7): 1129-1133.(Zhang Rui, Wang Yong. Simulation of TM610 higher-order mode cylindrical cavity. High Power Laser and Particle Beams, 2006, 18(7): 1129-1133)

[12] 娄卫华,王勇,王树忠.2维光子晶体谐振腔的分析与模拟[J].强激光与粒子束, 2008, 20(3): 451-454.(Lou Weihua, Wang Yong, Wang Shuzhong. Analysis and simulation of two dimensional photonic crystal cavity. High Power Laser and Particle Beams, 2008, 20(3): 451-454)

[13] Itikaza Y. Effective collision frequency of electrons in gases[J]. Physic of Fluids, 1973, 16(6): 831-835.

[14] 沈致远,黄恭宽,水启刚,等.微波技术[M].北京: 国防工业出版社, 1980: 200-214.(Shen Zhiyuan, Huang Gongkuan, Shui Qigang, et al. Microwave technology. Beijing: National Defense Industry Press, 1980: 200-214)

刘繁, 汪建华, 王秋良, 戴松元, 刘长林. 常压微波等离子体炬装置的模拟与设计[J]. 强激光与粒子束, 2011, 23(6): 1504. Liu Fan, Wang Jianhua, Wang Qiuliang, Dai Songyuan, Liu Changlin. Numerical modeling and design of atmospheric pressure microwave plasma jet[J]. High Power Laser and Particle Beams, 2011, 23(6): 1504.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!