作者单位
摘要
半挥发性有机物(SVOCs)在颗粒间的重新分配过程, 对于理解大气颗粒物的生长和沉降具有重要意义。 光镊-受激拉曼光谱技术, 相比于其他悬浮技术, 不但可以悬浮液滴, 而且能获得液滴的常规拉曼散射光谱, 得到液滴的化学组成和结构等信息, 根据受激拉曼米氏散射共振可以计算出液滴的半径和折射率随环境的变化。 光镊受激拉曼光谱技术的优势, 体现在颗粒半径可以精确测量, 化学组成、 相态和形态可控, 并可实现长时间观测。 采用光镊-受激拉曼光谱技术, 观测了不同摩尔比(OIR)的丙二酸/硝酸钠的悬浮液滴, 与样品池内壁沉积的颗粒中丙二酸的重新分配过程。 发现当OIR为1:1时, 光镊悬浮的液滴和样品池沉积的液滴在整个观测相对湿度(RH)内均未有硝酸钠晶体析出, 在恒定RH下, 悬浮液滴的半径随着丙二酸的蒸发而缓慢减小。 当OIR为1:2及1:3, 即硝酸钠的含量较多时, 在RH分别低于52.5%, 58%的条件下, 悬浮液滴的半径在恒定RH下并没有减小反而逐渐增加, 这表明丙二酸在悬浮液滴与周围样品池沉积的液滴之间发生了重新分配, 归因于低RH下, 样品池表面沉积的液滴中, 硝酸钠经历了异相成核而出现了结晶, 而悬浮液滴始终保持溶液状态。 因此样品池表面沉积颗粒物的丙二酸蒸汽压, 远大于没有结晶的悬浮液滴中丙二酸的蒸汽压, 从而使得丙二酸由样品池内壁上的颗粒物挥发转移至悬浮液滴中, 使得悬浮液滴的半径增大。 这对于解释SVOC在外混的不同相态颗粒间的重新分配过程是一个很好的模型。
半挥发性有机物 光镊 重新分配 丙二酸/硝酸钠 Semi-volatile organic compounds Optical tweezers Repartitioning Malonic/NaNO3 
光谱学与光谱分析
2020, 40(10): 3098
作者单位
摘要
北京理工大学化学与化工学院, 化学物理研究所, 北京 100081
研究半挥发性气溶胶物质的气粒分配对于更准确地描述大气气溶胶的组成和尺寸分布是至关重要的。 硝酸铵是亚微米颗粒物的主要组成部分, 特别是在高污染事件中。 为了更深入的了解硝酸铵气溶胶的气粒分配问题, 利用激光悬浮技术捕获、 悬浮半挥发性无机物硝酸铵液滴单颗粒(2~10 μm), 控制相对湿度条件、 温度条件, 并采集氢-氧振动带的受激拉曼峰位信息, 利用非弹性米氏散射理论计算实时液滴半径尺寸、 折射率和浓度, 利用稳态传质模型Maxwell公式推算出了不同湿度下的蒸汽压。 实验数据计算出的硝酸铵的饱和蒸汽压值的数量级与文献报道一致。 当RH分别恒定在80%, 73%, 68%, 57.3%, 55.4%, 44.8%时, 饱和蒸汽压值为(1.67±0.24)×10-3, (1.82±0.19)×10-3, (2.91±0.13)×10-3, (3.5±0.28)×10-3, (4.59±0.22)×10-3和(6.64±0.3)×10-3 Pa, 显然, 随着相对湿度的降低, 饱和蒸汽压值增大, 即湿度降低促进硝酸铵的挥发。 此外, 还推算了不同湿度下硝酸铵气溶胶液滴的挥发通量, 挥发通量值在(4.01±0.79)×10-7~(3.32±0.77)×10-8 mol·(s·m2)-1之间。 这对更好的了解气溶胶在挥发过程中的微观过程有重要意义。
气溶胶 光镊技术 硝酸铵 挥发性 蒸发压力 Aerosol Optical tweezers Ammonium nitrate Volatility Vapor pressures 
光谱学与光谱分析
2019, 39(5): 1648

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!