作者单位
摘要
中国科学院上海光学精密机械研究所 精密光学制造与检测中心,上海 201800
计算机控制光学元件面形修复(Computer Control Optics Surfacing, CCOS)需要通过计算驻留时间,反复迭代,从而得到更小的误差。因为干涉测试过程中边缘面形测试的条件限制,只能得到更小孔径的误差分布图,所以面形的预测性延拓是磁流变抛光、离子束抛光等加工方式的基础技术。基于面形误差的相似性和边缘误差的连续性为出发点,开发了采用基于Zernike拟合和Laplace方程配合的方法进行光学元件面形误差边缘延拓技术。开展了相关理论分析,设计相关算法并实现了延拓过程,延拓结果符合面形相似形和连续性的加工要求,采用直接法和残余误差计算方法对延拓结果进行评估,结果证明了延拓方法的有效性。
光学元件测试 面形误差延拓 Zernike拟合 Laplace方程 optics testing extrapolation of surface error map Zernike fitting Laplace equation 
红外与激光工程
2022, 51(9): 20220602
作者单位
摘要
1 武汉理工大学 材料科学与工程学院, 湖北 武汉 430070
2 中国科学院 上海光学精密机械研究所 强激光材料重点实验室, 上海 201800
利用三坐标测量仪在光学非球面镜研磨与粗抛阶段进行面形检测时, 测量结果常由于补偿程序不完善而出现像散误差。本文分析了非球面三坐标测量得到的数据, 指出测量结果中出现像散误差是测头半径补偿不准确所致。然后, 提出了一种离线数据处理方法对测量数据进行补偿来消除像散误差。该方法通过计算网格排列的测头中心点行和列方向的切向量得出曲面上每个点的法向矢量; 根据测头半径计算出测头球心到接触点的偏移量, 从而实现三坐标测量仪的三维测头半径补偿。球面样板实验显示这种方法可以将该样板测量中的像散峰谷值(PV)由4.921 9 μm减小到0.065 2 μm, 基本消除了测量结果中的像散误差, 提高了三坐标测量结果的准确度。实验结果验证了提出的三维测头半径补偿程序的有效性。
非球面检测 三坐标测量仪 测头半径补偿 像散补偿 aspheric element testing Three Coordinate Measuring Machine(CMM) compensation for radius of probe astigmatism compensation 
光学 精密工程
2016, 24(12): 3012

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!