作者单位
摘要
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
为了提高磁流变加工连续位相板边缘加工质量, 实现元件全口径抛光, 必须对元件原始误差面形进行边缘延拓, 针对现有边缘延拓算法的不足, 提出了采用改进的二维Gerchberg带宽受限延拓算法实现连续位相板元件面形频域匹配的边缘延拓。该方法首先采用复调制频谱放大技术Zoom FFT对元件原始误差面形进行频谱分析, 计算其高低截止频率; 然后采用改进后的二维Gerchberg带宽受限延拓算法进行迭代计算, 在原始面形外围延拓出与原始面形同频的高精度延拓结构面形。采用尺寸为100 mm×100 mm具有复杂频谱结构的连续位相板元件进行边缘延拓和磁流变加工实验, 实验结果表明: 采用改进的Gerchberg边缘延拓技术延拓的面形边缘更加规整, 边缘效应影响半径由5 mm减小到2 mm, 面形残余误差 RMS从19.3 nm减小到了9.7 nm。这说明该边缘延拓技术可以明显提高连续位相板面形的边缘加工质量和整体收敛精度。
磁流变加工 边缘延拓 Gerchberg延拓算法 ZoomFFT算法 连续位相板 magnetorheological finishing edge extrapolation Gerchberg extrapolation algorithm ZoomFFT algorithm CPP 
红外与激光工程
2019, 48(4): 0442001
作者单位
摘要
成都精密光学工程研究中心, 四川 成都 610041
为了利用磁流变加工实现对大口径平面光学元件波前中频误差的控制, 研究了磁流变抛光去除函数的频谱误差校正能力和磁流变加工残余误差抑制方法。首先, 比较了模拟加工前后元件中频功率谱密度(PSD1)误差和元件PSD曲线的变化, 分析了磁流变去除函数的可修正频谱误差范围。然后, 利用均匀去除方法分析了加工深度、加工轨迹间距和去除函数尺寸等磁流变加工参数对中频PSD2误差的影响, 提出了抑制中频PSD2误差的方法。最后, 对一块400 mm×400 mm口径平面元件的频谱误差进行了磁流变加工控制实验。实验显示: 3次迭代加工后, 该元件的波前PV由加工前的0.6 λ收敛至0.1 λ, 中频PSD1误差由5.57 nm收敛至1.36 nm, PSD2由0.95 nm变化至0.88 nm。结果表明: 通过优化磁流变加工参数并合理选择加工策略, 可实现磁流变加工对大口径平面光学元件中频误差的收敛控制。
磁流变加工 平面光学元件 中频误差 功率谱密度 去除函数 magnetorheological finishing flat optics mid-spatial frequency error Power Spectral Density(PSD) removal function high power laser 
光学 精密工程
2016, 24(12): 3076
作者单位
摘要
1 哈尔滨工业大学, 黑龙江 哈尔滨 150001
2 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
为了实现大口径平面光学元件的高精度加工, 开展了磁流变加工技术的研究。介绍了磁流变加工原理及去除函数的数学模型。根据磁流变加工的特点, 建立了元件整体加工的工艺流程, 给出了元件加工的工艺要素。然后, 开发了抛光斑的提取软件, 并基于轨迹段划分的速度模式开发了工艺软件, 分析了工艺软件的各项功能模块。最后, 基于元件加工的工艺流程, 对一件800 mm×400 mm的元件进行了加工实验。利用检测设备测得了元件的低、中、高频的加工指标, 其低频反射波前PV值为34 nm, 中频波前功率谱密度(PSD1)值为1.7 nm, 高频粗糙度Rq值为0.27 nm。实验显示了较好的实验结果, 验证了利用磁流变加工技术实现了大口径光学元件的高精度加工的可行性。本文还阐述了磁流变加工技术在高功率激光元件中应用的优点。
平面光学元件 磁流变加工 抛光 面形精度 高功率激光器 plane optical element magnetorheological processing polishing surface flatness high power laser 
光学 精密工程
2016, 24(12): 3054
作者单位
摘要
中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
最小空间周期是连续位相板(CPP)设计和加工过程中的重要特征参数。根据惯性约束聚变大型激光驱动装置的需求,建立不同空间周期的CPP设计与分析方法,研究了不同最小空间周期对磁流变加工和焦斑性能的影响。结果表明,磁流变加工的去除函数尺寸直接与CPP的最小空间周期成线性关系,而加工去除量与最小空间周期的平方根成线性关系,最小周期越大,加工越容易,但加工量越大;焦斑整形性能受最小空间周期的影响小,能量集中度差异小于0.2%,但焦斑顶部均匀性随着最小空间周期变小而变好,5 mm 最小周期CPP的焦斑顶部不均匀比15 mm 的CPP小3.5%。因此,设计时应尽量减小最小空间周期,但选取的最小空间周期不能大于加工设备的约束条件。
光学器件 连续相位板 焦斑 最小空间周期 光束匀滑 惯性约束聚变 
中国激光
2015, 42(9): 0908001
作者单位
摘要
成都精密光学工程研究中心, 成都 610041
对采用磁流变抛光(MRF)工艺加工的大口径连续相位板(CPP)的波前及其光强控制特性进行了分析,对由不同的加工参数(走刀间距和走刀偏置)所加工的三组CPP进行了比较,并分析了MRF加工所引入的中频误差对CPP波前和光强特性的影响。结果表明,走刀间距为2 mm、对应走刀偏置范围为0.1~0.3 mm时所加工CPP的波前及其光强控制能力较差,远场有一定程度的旁瓣产生;走刀间距为2 mm、偏置范围为0.4~0.5 mm时所加工CPP和走刀间距为1 mm、偏置范围为0.1~0.3 mm时所加工CPP相比较,迭代加工效率提高,CPP波前中频误差得到一定的改善。进一步分析表明MRF所引入的中频误差对CPP波前梯度及旁瓣影响较大。
连续位相板 磁流变 中频误差 焦斑 continuous phase plate magnetorheological finishing mid-frequency error focal spot 
强激光与粒子束
2014, 26(9): 092012
作者单位
摘要
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
重点分析了非球面元件磁流变加工的动态稳定性影响因素。设计了非球面元件的自动装调定位系统,提高了装调精度。采用一种拟合光栅式加工的新方法来验证其效果,通过测量元件表面形成的直线沟壑深度、宽度波动比例来评价去除的动态稳定性。在400 mm×400 mm口径的方形非球面元件上进行面形收敛验证实验,波长λ为632.8 nm时,加工后的透射波前误差PV值达到0.331λ,低频透射波前梯度误差GRMS值达到了0.008λ/cm。
磁流变 非球面 面形精度 动态稳定性 magnetorheological finishing aspherical optics surface precision dynamic stability 
强激光与粒子束
2014, 26(5): 052012
作者单位
摘要
成都精密光学工程研究中心, 成都 610041
针对光学元件高精度确定性加工,提出并实现了基于自适应步长算法实现离子束抛光轨迹段划分及进给速度求解。首先,对常规的等步长算法实现抛光轨迹段划分所存在的诸多问题进行了重点分析。其次,针对这些问题,提出了等效驻留时间轮廓计算方法及自适应步长算法,有效地避免了等步长法所存在的问题。然后,采用新算法对600 mm平面反射元件进行了实例计算,经加工后,元件98%口径内的面形精度峰谷(PV)值由110.22 nm(λ/5.7,λ=632.8 nm)收敛至4.81 nm(λ/131.6)。最后,基于自研的离子束抛光设备,实现了光学元件在100 mm口径内面形PV值小λ/70的超高面形精度。
离子束抛光 等效驻留时间 去除函数 等步长法 自适应步长法 ion beam figuring equal profile of dwell-time removal function same step algorithm adaptive step size algorithm 
强激光与粒子束
2013, 25(12): 3292
作者单位
摘要
1 成都精密光学工程研究中心, 成都 610041
2 南京理工大学 电子工程与光电信息技术学院, 南京 210094
为了充分掌握磁流变抛光中磁场强度、浸入深度、抛光轮转速、磁流变液水分含量等工艺参数对抛光结果的影响规律,以期提高元件的面形精度和表面的质量,在研究了磁流变抛光材料的去除数学模型的基础上,结合实验室的PKC100P1型抛光设备,对上述的关键工艺参数分别进行了研究,设置了一系列的实验参数,进行了详细的实验探索,分析了单因素条件下材料的去除量以及元件表面质量同关键工艺参数的内在联系,得出了相应影响关系曲线。从关系曲线表明:工艺参数对抛光斑的去除效率以及被加工元件表面质量存在着明显的影响规律,掌握这些影响关系就能用于分析和优化磁流变加工的结果,为高精度光学表面的加工提供可靠的保障,同时实验的结果也很好地验证了磁流变抛光材料去除理论的正确性。
精密加工 磁流变抛光 去除函数 磁流变液 Preston方程 precision machining magnetorheological finishing removal function MRF fluid Preston function 
强激光与粒子束
2013, 25(9): 2281

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!