作者单位
摘要
1 长春工业大学 化学工程学院, 吉林 长春 130012
2 长春工业大学 材料科学与工程学院, 吉林 长春 130012
为改善有机半导体器件的界面性能, 在氮化硅层上旋涂聚甲基丙烯酸甲酯(PMMA)构成复合绝缘层。首先, 利用原子力显微镜研究了不同浓度的PMMA复合绝缘层的表面形貌及粗糙度。接着, 蒸镀六联苯(p-6P)、酞菁铜和金电极, 构成有机的金属-绝缘层-半导体(MIS)器件。最后, 研究了MIS器件的回滞效应及电性能。实验结果表明, 复合绝缘层的粗糙度为单绝缘层的1/5, 大约1.4 nm。复合绝缘层上的p-6P薄膜随着PMMA浓度增加形成更大更有序的畴, 但单绝缘层上薄膜呈无序颗粒状。复合绝缘层的有机MIS器件几乎没有回滞现象, 但单绝缘层的器件最大回滞电压约为12.8 V, 界面陷阱电荷密度约为1.16×1012 cm-2。复合绝缘层有机薄膜晶体管的迁移率为1.22×10-2 cm2/(V·s), 比单绝缘层提高了60%, 饱和电流提高了345%。基于复合绝缘层的MIS器件具有更好的界面性能和电性能, 可应用到有机显示领域。
复合绝缘层 金属-绝缘层-半导体 聚甲基丙烯酸甲酯 氮化硅 回滞效应 compound insulation layers metal-insulator-semiconductor polymethyl methacrylate silicon nitride hysteresis effect 
发光学报
2019, 40(6): 773
王丽娟 1,*范思大 1,2张梁 1张沛沛 1,2[ ... ]孙丽晶 1
作者单位
摘要
1 长春工业大学 化学工程学院, 吉林 长春 130012
2 长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
为了提高太阳能电池的性能, 研究磁性纳米粒子在外加磁场的作用下对聚合物太阳能电池有源层P3HT∶PCBM成膜及太阳能电池性能的影响。 本文采用热分解法制备了磁性Fe3O4纳米粒子, 将不同质量分数的Fe3O4纳米粒子掺入到P3HT∶PCBM溶液中, 旋涂后在外加磁场的作用下自组成膜。通过TEM、XRD对制备的Fe3O4纳米粒子进行表征, 并利用偏光显微镜、原子力显微镜对成膜质量进行探究。结果表明, 采用热分解法制备的Fe3O4纳米粒子直径在10 nm左右, 在外加磁场作用下, Fe3O4纳米粒子对成膜有一定的调控作用。当Fe3O4纳米粒子掺杂质量分数为1%时, 太阳能电池器件的开路电压增加3.77%, 短路电流增加24.93%, 光电转换效率提高7.82%。
Fe3O4纳米粒子 聚合物太阳能电池 表面形貌 Fe3O4 nanoparticles polymer solar cells surface morphology P3HT∶PCBM P3HT∶PCBM 
发光学报
2018, 39(10): 1410
作者单位
摘要
1 吉林建筑大学, 吉林 长春130118
2 长春工业大学 化学工程学院, 吉林 长春130012
红荧烯具有导电性好、吸收系数高等优良的荧光特性和半导体特性,是目前报道的单晶迁移率最高的材料,在有机光电器件中有很好的发展前景,受到科研人员的广泛关注。目前国内外主要采用真空蒸镀方法和溶液加工方法制备红荧烯晶体薄膜,采用各种制备工艺来提高红荧烯薄膜质量。本文在系统介绍红荧烯晶体薄膜制备工艺研究进展的基础上,归纳总结了掺杂种类/聚合物浓度、后处理工艺/实验温度等对红荧烯晶体性能的影响,简要概述了红荧烯薄膜在有机光电子器件应用研究中所取得的研究成果,最后展望了基于红荧烯晶体薄膜的光电器件的发展趋势。
红荧烯 有机光电器件 溶液法 真空蒸镀 聚合物 rubrene organic optoelectronic device solution process vacuum evaporation polymer 
发光学报
2018, 39(4): 494
李占国 1,2,*张沛沛 1,2张梁 2孙洋 2[ ... ]王丽娟 2
作者单位
摘要
1 长春理工大学 光电工程学院, 吉林 长春130022
2 长春工业大学 化学工程学院, 吉林 长春130012
为了获得低成本、高结晶度的红荧烯薄膜, 采用溶液加工的方法和聚合物界面修饰层研究了红荧烯薄膜的性质。首先, 通过旋涂方法在Si/SiO2衬底上先沉积一层聚乙烯吡咯烷酮(PVP)作为界面修饰层, 利用偏光显微镜(POM)、原子力显微镜(AFM)研究了PVP层表面形貌及粗糙度。接着在PVP上滴涂红荧烯溶液后固化烘干, 制备红荧烯晶体薄膜, 研究了不同PVP浓度和不同成膜温度下界面修饰层对红荧烯表面形貌的影响。然后, 利用X射线衍射(XRD)表征对比研究了薄膜的微观结构。最后, 分析了红荧烯晶体薄膜的生长机制。实验结果表明: 80~140 ℃及低浓度的PVP条件下能得到结晶度高、连续的红荧烯球晶, 并且温度升高时, 球晶尺寸变大。PVP作为界面修饰层有利于改善红荧烯的成膜性, 制备高结晶度的晶体薄膜。
溶液法 聚乙烯吡咯烷酮 界面修饰 红荧烯晶体 晶体形貌 solution process Polyvinyl Pyrrolidone(PVP) interface modification rubrene crystals crystal morphology 
发光学报
2018, 39(2): 148
张玉婷 1,2,*王卓 3孙洋 1闫闯 1[ ... ]王丽娟 1
作者单位
摘要
1 长春工业大学 化学工程学院, 吉林 长春130012
2 长春理工大学 光电工程学院, 吉林 长春130022
3 吉林省产品质量监督检验院, 吉林 长春130000
利用原子力显微镜研究了二氧化硅衬底上红荧烯薄膜的生长及稳定性。在较低沉积速率下, 较低衬底温度时, 红荧烯分子有充足的扩散时间, 利于薄膜的横向生长, 形成连续性、均匀性较好的薄膜。快速蒸镀及较高衬底温度使红荧烯薄膜转变为纵向生长模式, 形成团粒状岛。横向生长的红荧烯薄膜在退火和空气中表现为亚稳特性, 随着退火温度的升高和空气中放置时间的延长, 红荧烯分子会自发地进行质量传输, 发生纵向转移, 转变为团粒状岛。获得了二氧化硅界面上红荧烯薄膜的生长及亚稳定机制模型。研究结果证明红荧烯分子与二氧化硅界面之间的作用力小于红荧烯分子间的作用力。
红荧烯 沉积速率 衬底温度 退火 稳定性 rubrene deposition rate substrate temperature annealing stability 
发光学报
2017, 38(8): 1047
作者单位
摘要
1 长春工业大学 化学工程学院, 吉林 长春 130012
2 长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
3 长春工业大学 基础科学学院, 吉林 长春 130012
为研究掺杂石墨烯量子点(GQDs)对聚合物电池的影响, 采用溶剂热法制备了GQDs, 掺杂到聚3-己基噻吩和富勒烯衍生物(P3HT∶PCBM)中作光敏层制备了聚合物太阳能电池。掺杂不同浓度的GQDs后, 聚合物电池的开路电压和填充因子都比未掺杂器件高。GQDs掺杂质量分数为0.15%时, 形成的掺杂薄膜平整、均匀, 填充因子提高了17.42%。GQDs经还原后, 随还原时间的延长, 填充因子FF增大。到45 min时, 电池的FF基本稳定, 从31.57%提高至40.80%, 提高了29.24%。退火后, 获得了最佳的掺杂GQDs的聚合物太阳能电池, 开路电压Voc为0.54 V, 填充因子FF为55.56%, 光电转换效率为0.75%。
氧化石墨烯 石墨烯量子点 掺杂 聚合物太阳能电池 graphene oxide graphene quantum dots doping P3HT∶PCBM P3HT∶PCBM solar cells 
发光学报
2016, 37(9): 1082
作者单位
摘要
1 长春工业大学 化学工程学院, 吉林 长春 130012
2 长春工业大学 基础科学学院, 吉林 长春 130012
超薄显示技术已成为市场的一种主流趋势。本文利用刻蚀后清洗的间歇式工艺研究了显示屏半成品的化学减薄。在光刻胶和边框胶保护下, 调整氢氟酸浓度, 加入一定量的硝酸、浓硫酸和盐酸, 并添加超声辅助条件, 刻蚀速率明显提高。通过交替的清洗工艺有效地降低了表面粗糙度, 并减少了表面白色附着物的沉淀。显示屏厚度从0.8 mm减薄到0.3 mm, 基板表面粗糙度为11.32 nm, 厚度均匀性为4.76 %。设计的间歇式减薄工艺可以应用到现有的显示屏生产工艺中, 为制作超薄液晶显示屏和超薄有机发光显示屏提供了一条可行的方案。
显示屏 化学减薄 间歇式工艺 刻蚀 display panel chemical slimming intermittent process etching 
液晶与显示
2016, 31(1): 52
都昊 1,2邹凤君 1李一平 1,2闫闯 1[ ... ]王丽娟 1
作者单位
摘要
1 长春工业大学 化学工程学院, 吉林 长春 130012
2 长春理工大学 理学院, 吉林 长春 130022
3 长春工业大学 基础科学学院, 吉林 长春 130012
利用原子力显微镜(AFM)、X射线衍射仪(XRD)研究了在氧化硅衬底上生长的α-四噻吩(α-4T)薄膜的表面形貌及分子取向。在低温下,获得了大尺寸、高有序的α-4T薄膜,为横向生长模式。衬底温度35 ℃以上转为纵向生长模式。晶体结构分析发现,α-4T薄膜属于单斜晶系,分子c-轴垂直基板排列。强的衍射峰和高有序的衍射峰意味着α-4T薄膜具有高的有序性和结晶性。电性能研究发现,提高衬底温度有利于提高薄膜的迁移率,衬底温度为35 ℃时器件迁移率为3.53×10-2 cm2·V-1·s-1。但衬底温度进一步增加,迁移率反而下降,与原子力分析结果一致。低温退火可以降低器件的亚阈值陡度,从13.27 V·dec-1降低到3.83 V·dec-1,使器件的界面缺陷降低,电性能提高。
α-四噻吩 薄膜生长 分子取向 电性能 α-quaterthiophene(α-4T) film growth molecular orientation electrical performance 
发光学报
2015, 36(12): 1445

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!