作者单位
摘要
1 长春理工大学 物理学院, 纳米光子学与生物光子学吉林省重点实验室, 吉林 长春  130022
2 佐治亚南方大学 物理与天文系, 美国佐治亚州 斯泰茨伯勒 30460
1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)作为一种水溶性交联剂,目前广泛应用于纳米材料研究中。然而,其对石墨烯量子点(GQDs)的光学性质影响很少被关注。本工作以羧基化石墨烯量子点(C-GQDs)为对象,研究EDC交联剂对C-GQDs光学性质的影响,改善了C-GQDs的荧光强度。实验中采用一步水相法得到C-GQDs与EDC复合物(C-GQDs/EDC)。实验结果表明,与EDC反应后,C-GQDs荧光显著增强约23倍。此外,也验证了溶液浓度、光辐照和反应时间等因素对荧光的影响。分析表明,C-GQDs的发光是本征态、表面态和缺陷态能级跃迁的多过程作用结果,而原C-GQDs中丰富的缺陷能级导致了发光性能的减弱。机理分析认为,EDC与羧基间发生的活化反应起到了表面缺陷钝化作用,提高了C-GQDs的表面态激子复合效率。该工作有效改善了C-GQDs发光强度低的问题,扩展了其在发光领域的应用前景,并为GQDs光学性质调控提供了参考方案。
石墨烯量子点 荧光 交联剂 表面态 graphene quantum dots fluorescence crosslinking agent surface states 
发光学报
2024, 45(2): 280
作者单位
摘要
1 长春理工大学 物理学院 纳米光子学与生物光子学吉林省重点实验室, 吉林 长春 130022
2 佐治亚南方大学 物理与天文系, 佐治亚州 斯泰茨伯勒 30460
本文详细研究了交联剂1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)对石墨烯量子点(GQDs)光学性质的影响及原因。采用水热法制备了GQDs,并与EDC反应得到GQDs/EDC复合物,对GQDs和GQDs/EDC的光谱特性进行研究。使用PBS溶液以及人工胃液样品,研究pH对GQDs/EDC荧光影响规律及作用机理。实验结果表明:GQDs表面缺陷被EDC钝化,使得GQDs的荧光在小于1 min内迅速增强,并在5~20 min内保持稳定;相比单独GQDs,GQDs/EDC的荧光强度显著提升约264倍;pH响应实验表明,在pH值为1.75~4.01及4.01~9.28范围内,GQDs/EDC具有荧光和吸收强度线性响应规律。生物兼容性表明,在25~300 µg/mL样品浓度下,人乳腺癌细胞存活率均大于80%;同时,对人工胃液pH具有较高的检测准确性,其相对标准偏差RSD ≤ 1.10%。EDC介导的荧光增强,使GQDs在检测、传感、成像等领域更具优势。同时,GQDs/EDC灵敏的pH响应特性使其在pH值检测应用中具有良好前景。
石墨烯量子点 EDC 荧光增强 表面钝化 pH响应 graphene quantum dots EDC fluorescence enhancement surface passivation pH response 
中国光学
2023, 16(3): 523
作者单位
摘要
湖北师范大学物理与电子科学学院,湖北 黄石 435002
制作了敏感材料修饰的拉锥光纤与微腔级联的多参量光纤传感器,并用实验研究了其应变、温度和湿度特性。所提微腔由飞秒激光划线放电形成,并对其进行拉锥。传感器的反射光谱干涉峰对应变的变化敏感,实验结果表明应变灵敏度为4.8 pm/με。然而,该结构对温度与湿度均不敏感,在该结构的锥部涂覆了掺入石墨烯量子点的聚乙烯醇之后,温度和湿度的灵敏度明显提升,此时最大温度灵敏度为20.4 pm/℃,最大相对湿度灵敏度最大为14.6 pm/%。对Dip1、Dip2、Dip3进行分析,再利用三阶矩阵消除交叉敏感,能够同时测量应变、温度和湿度。
光纤光学 光纤传感器 应变 温度 相对湿度 石墨烯量子点 聚乙烯醇 
光学学报
2023, 43(1): 0106003
作者单位
摘要
湖北师范大学物理与电子科学学院,湖北 黄石 435002
提出了一种基于拉锥细芯光纤的温湿度传感器。先将细芯光纤熔接在两段多模光纤的中间,并在多模光纤两端熔接单模光纤,利用拉锥机对细芯光纤进行分步拉锥。实验测得细芯光纤拉锥前后的传感器的温度灵敏度分别为31 pm/℃和72.7 pm/℃。将少量石墨烯量子点-聚乙烯醇涂覆在传感器锥部得到温湿度传感器,实验测得其温度灵敏度最大为288.3 pm/℃,湿度灵敏度可达到131.7 pm/%。该传感器具有性能稳定、灵敏度高、制备简单、成本低的特点,在温度和湿度传感领域具有广阔的应用前景。
传感器 细芯光纤 石墨烯量子点 聚乙烯醇 温度 相对湿度 
中国激光
2023, 50(1): 0113020
陈良锋 1,2,*李永强 1,2王杭 1,2何朋 1,2[ ... ]丁古巧 1,2
作者单位
摘要
1 中国科学院上海微系统与信息技术研究所,信息功能材料国家重点实验室,上海 200050
2 中国科学院大学材料科学与光电技术学院,北京100049
石墨烯量子点是一类重要的石墨烯衍生物,在量子尺寸效应的作用下,石墨烯量子点显示出与传统石墨烯截然不同的半导体特性。目前,石墨烯量子点以其优异的光致发光特性,高稳定性,低生物毒性,可调制的界面结构,在荧光防伪材料、生物成像、肿瘤诊疗、光/电催化等领域展现出突出的优势。从石墨烯量子点光致发光特性出发,对石墨烯量子点的带隙这一关系到该材料在各应用领域的重要基本物性进行总结,旨在明确当前在石墨烯量子点光致发光机制研究、光致发光性能调制两大领域的研究进展与挑战。
石墨烯量子点 碳点 光致发光 碳材料 graphene quantum dots carbon dots photoluminescence carbon materials 
硅酸盐学报
2022, 50(7): 1821
作者单位
摘要
中北大学 仪器与电子学院, 山西 太原 030051
采用简单、绿色、低成本的方法合成石墨烯量子点(GQDs)一直是研究者们不断追求和探究的热点。本文首先采用简单、低成本的激光诱导聚二甲基硅氧烷(PDMS)方法成功制备出有缺陷的少层石墨烯, 然后再以所制备的石墨烯为碳源, 采用一步水热法成功制备出了分散性良好、横向平均尺寸约为6.67 nm、发稳定蓝色荧光的GQDs溶液。分别采用透射电镜(TEM)、拉曼光谱、紫外吸收光谱和荧光光谱对GQDs的形貌和荧光特性进行了表征。以硫酸奎宁为标准参考物, 计算所得GQDs的荧光量子产率约为6.3%。本研究提出的制备GQDs的方法具有简单、低成本、低污染的优势, 为石墨烯量子点的制备提供了一种新途径、新参考, 也为石墨烯量子点大规模商业化制备提供了潜力。
激光诱导 石墨烯 石墨烯量子点 水热法 荧光特性 laser induced graphene graphene quantum dots hydrothermal method fluorescence properties 
发光学报
2021, 42(12): 1900
作者单位
摘要
1 周口师范学院 网络工程学院,河南 周口 466001
2 焦作师范高等专科学校,河南 焦作 454001
3 西北工业大学 电子信息学院,陕西 西安 710029
传统的氧化锌紫外探测器存在光电流小的问题,由于石墨烯具有较高的载流子迁移率,文中采用一种简便的旋涂退火的方法,使得石墨烯量子点在氧化锌纳米线表面复合。利用石墨烯量子点修饰氧化锌纳米线的表面后,制备的氧化锌基紫外光电探测器在5 V偏置电压条件下,在波长为365 nm、功率为1.35 mW/cm2的紫外光照射下,光电流从9.5 μA增加到65 μA,光电流增大了6.8倍,光电流明显提高。这种简单的旋涂退火方法,在有效降低紫外光电探测器加工工艺的同时,提高了探测器的性能,将为下一代可持续绿色发展策略,设计高效率低成本的光电设备提供有益的参考。
氧化锌纳米线 石墨烯量子点 紫外光 ZnO nanowires graphene quantum dots ultraviolet 
红外与激光工程
2021, 50(4): 20200447
作者单位
摘要
南昌大学化学学院, 江西 南昌 330031
石墨烯量子点(GQDs)以其优异的性能在生物医学领域引起了广泛的关注, 但其潜在的毒性研究较少。 将荧光和紫外光谱法结合化学计量学研究GQDs对胰蛋白酶结构和功能的影响。 从荧光猝灭实验可知, GQDs可猝灭胰蛋白酶的固有荧光并抑制胰蛋白酶的生物活性。 当加入不同浓度的GQDs, 胰蛋白酶在350 nm处的荧光发射峰的强度随之降低且蓝移(350~344 nm), 表明GQDs可改变胰蛋白酶所处的微环境, 使其疏水性增加; 与此同时, GQDs浓度越高, 胰蛋白酶荧光变化越明显, 说明GQDs对胰蛋白酶可能有潜在毒性。 通过圆二色谱实验可知胰蛋白酶的α-螺旋结构由19.12%下降至16.23%, 说明GQDs加入诱导胰蛋白酶的二级结构发生改变, 使胰蛋白酶骨架松弛; 三维荧光光谱实验进一步说明GQDs的存在不仅改变了胰蛋白酶所处的微环境并使胰蛋白酶的构象发生变化。 蛋白质氨基酸残基的微环境由蛋白质分子的构象所决定, 当蛋白质的生色团所处的微环境发生变化时, 其紫外-可见吸收光谱也随之发生变化。 由于生命作用体系都比较复杂, 测量所得到的波谱数据中大部分信息是隐含和重叠的, 因此需要利用和发展有效的生物信号采集、 转导、 数据处理和解析方法, 把能对生命现象做出解释的有用信息尽可能多地从测量数据中挖掘出来。 为获取足够而有效的生命化学信息, 该研究用连续滴定技术采集多维光谱数据, 运用多元曲线分辨-交替最小二乘法(MCR-ALS)解析光谱数据矩阵, 从重叠严重的光谱中同时得到定性(各组分光谱及作用过程中复合物的真实存在)和定量(各组分的浓度变化趋势)信息, 从而认识GQDs与胰蛋白酶在作用中达到平衡时各组分的状态和整个动态变化过程。 MCR-ALS的解析结果为进一步了解GQDs与胰蛋白酶相互作用的动力学过程提供了依据, 说明GQDs可以与胰蛋白酶相互作用, 并形成GQDs15-胰蛋白酶复合物。 该研究为GQDs可能存在的毒性风险研究提供了信息。
光谱法 化学计量学 石墨烯量子点 胰蛋白酶 生物活性 作用过程 Spectroscopy Chemometrics Graphene quantum dots Trypsin Biological activity Interaction 
光谱学与光谱分析
2020, 40(10): 3141
作者单位
摘要
中国石油大学(华东) 理学院, 山东 青岛 266580
制作了一种利用普通单模光纤和石墨烯量子点材料共同构建的法布里珀罗湿度传感器.利用搭建的实验系统,在环境相对湿度11% RH~85% RH范围内进行了湿度响应实验,并对湿度上升和下降过程分别进行了测量.湿度上升过程中灵敏度为0.560 6 nm/RH%,线性度为0.999 47;湿度下降过程中灵敏度为0.565 5 nm/RH%,线性度达0.999 36.实验结果表明,该湿度传感器具有较高的响应灵敏度、较好的线性响应特性和测量重复性.另外对该传感头的温度响应特性进行实验研究,得到了较好的线性响应结果,温度响应灵敏度为0.035 nm/℃,残差平方和为0.012 41,灵敏度标准差为2.305×10-4,湿度响应灵敏度约为温度响应的17倍.对其动态响应特性进行了典型测试,在相对湿度43%条件下得到了干涉光谱波长漂移的动态响应数据,得到了较快的动态响应,其响应时间和恢复时间分别为6.5 s和9.0 s.研究结果为研制低成本、易制作、高灵敏的光纤湿度传感器提供了一种有益的探索.
湿度测量 温度测量 光纤传感器 法布里珀罗 石墨烯量子点 Humidity measurement Temperature measurement Optical fiber sensor Fabry-Perot Graphene quantum dots 
光子学报
2020, 49(9): 0906003
作者单位
摘要
1 长春工业大学 化学工程学院, 吉林 长春 130012
2 长春理工大学 光电工程学院, 吉林 长春 130022
3 海南师范大学 物理电子工程学院, 海南 海口 571158
采用溶剂热法,以氧化石墨烯为前驱体制备了石墨烯量子点(GQDs),将不同制备条件和质量分数的GQDs掺杂到聚3-己基噻吩和[6,6\]-苯基-C61-丁酸甲酯(PCBM∶P3HT)中作为敏感层制备了太阳能电池器件。实验结果表明,敏感层掺杂0.2%质量分数的GQDs时,太阳能电池光电转换效率较未掺杂器件提高了16.45%。敏感层掺杂反应时间4 h和温度220 ℃制备的GQDs,获得低粗糙度和高紫外可见光吸收强度的敏感层薄膜,制备的太阳能电池器件光电转换效率为1.34%,较未掺杂GQDs器件提高了12.60%。因此,GQDs适宜的制备条件和掺杂浓度可以提高太阳能电池器件的光电转换效率。
石墨烯量子点 敏感层P3HT∶PCBM 聚合物太阳能电池 表面粗糙度 UV-Vis吸收光谱 graphene quantum dots active layer P3HT∶PCBM polymer solar cells surface roughness UV-Vis absorption spectra 
发光学报
2020, 41(9): 1137

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!