作者单位
摘要
1 中国科学院微电子研究所, 北京 100029
2 中国科学院大学, 北京 100049
随着半导体制造步入1x nm技术节点时代,光刻机中的对焦控制精度需要达到几十纳米。在纳米精度范围内,硅片上的集成电路(IC)工艺显著影响调焦调平系统的测量精度。基于实际的调焦调平光学系统模型和三角法、叠栅条纹法测量原理,建立工艺相关性误差模型。研究表明,工艺相关性误差主要来源于测量光在光刻胶涂层内部的多次反射。选取3种光刻胶仿真分析发现,不同光刻胶的工艺相关性误差随光刻胶厚度的变化趋势相同,随测量光入射角(45°~85°)的增大而减小。在实验验证平台上分别测量7种工艺硅片,实验测量值与理论模型计算值差异统计平均值小于6 nm。结果表明,光刻机中调焦调平系统的测量光有必要采用大入射角度,同时提高光刻胶的涂胶均匀性,以减少工艺相关性误差。
测量 调焦调平 工艺相关性 纳米光刻 
光学学报
2016, 36(8): 0812001
孙裕文 1,2,3,*李世光 1,2,3宗明成 1,2
作者单位
摘要
1 中国科学院微电子研究所, 北京 100029
2 中国科学院微电子研究所微电子器件与集成技术重点实验室, 北京 100029
3 中国科学院大学, 北京 100049
随着半导体制造步入1x nm技术节点时代,调焦调平系统的测量精度达到几十纳米。在纳米尺度范围内,集成电路(IC)工艺对调焦调平测量精度的影响很大。提出一种基于光学三角法和叠栅条纹法的调焦调平测量技术,利用空间分光系统将两组位相差为π的叠栅条纹同时成像到两个探测器上,通过归一化差分的方法计算硅片高度,可有效降低调焦调平测量技术对IC工艺的敏感度,尤其是IC工艺导致的光强变化的敏感性。实验结果表明,该系统测量重复性精度为8 nm(3σ),线性精度为18 nm(3σ)。当测量光强变化达90%时,该测量技术引起的线性精度变化为15 nm(3σ);当光强变化为65%时,线性精度变化小于1 nm(3σ)。
测量 调焦调平 空间分光 硅片高度 集成电路工艺 
光学学报
2016, 36(5): 0512002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!