光学学报, 2016, 36 (8): 0812001, 网络出版: 2016-08-18   

纳米光刻中调焦调平测量系统的工艺相关性 下载: 740次

Process Dependency of Focusing and Leveling Measurement System in Nanoscale Lithography
作者单位
1 中国科学院微电子研究所, 北京 100029
2 中国科学院大学, 北京 100049
摘要
随着半导体制造步入1x nm技术节点时代,光刻机中的对焦控制精度需要达到几十纳米。在纳米精度范围内,硅片上的集成电路(IC)工艺显著影响调焦调平系统的测量精度。基于实际的调焦调平光学系统模型和三角法、叠栅条纹法测量原理,建立工艺相关性误差模型。研究表明,工艺相关性误差主要来源于测量光在光刻胶涂层内部的多次反射。选取3种光刻胶仿真分析发现,不同光刻胶的工艺相关性误差随光刻胶厚度的变化趋势相同,随测量光入射角(45°~85°)的增大而减小。在实验验证平台上分别测量7种工艺硅片,实验测量值与理论模型计算值差异统计平均值小于6 nm。结果表明,光刻机中调焦调平系统的测量光有必要采用大入射角度,同时提高光刻胶的涂胶均匀性,以减少工艺相关性误差。
Abstract
With the development of semiconductor manufacturing to 1x nm technological node, focus control accuracy of lithography needs to meet dozens of nanometers. In the range of nanoscale, integrated circuit (IC) process on silicon wafer has an important impact on the measurement accuracy of the focusing and leveling system. A process dependent error model is established based on actual focusing and leveling optical system model, trigonometry and Moire measurement principle. Research shows that process dependent error mainly results from the multiple reflections inside the photoresist. Simulation is conducted with three different photoresists. The simulation results indicate that process dependent error of different photoresists has the same trend as the photoresist thickness and process dependent error decreases with the increase of incident angle (45°~85°). Seven processed silicon wafers are measured on the experimental setup. The statistical mean of the difference between the experimental measurement and the theoretical model calculation is less than 6 nm. The results show that, in order to reduce the process dependent error, it is necessary to increase the angle of incidence of focusing and leveling system in lithography and improve the uniformity of the photoresist coating.
参考文献

[1] Alagna P, Zurita O, Timoshkov V, et al. Optimum ArFi light source bandwidth for 10 nm node logic imaging performance[C]. SPIE, 2015, 9426: 942609.

[2] Bouchoms I, Leenders M, Kuit J J, et al. Extending 1.35 NA immersion lithography down to 1x nm production nodes[C]. SPIE, 2012, 8326: 83260L.

[3] 姚汉明, 胡松, 邢廷文. 光学投影曝光微纳加工技术[M]. 北京: 北京工业大学出版社, 2006: 61-62.

    Yao Hanming, Hu Song, Xing Tingwen. Guangxue touying baoguang weina jiagong jishu[M]. Beijing: Beijing University of Technology Press, 2006: 61-62.

[4] 曾爱军, 王向朝, 徐德衍. 投影光刻机调焦调平传感技术的研究进展[J]. 激光与光电子学进展, 2004, 41(7): 24-30.

    Zeng Aijun, Wang Xiangchao, Xu Deyan. Progress in focus and level sensor for projection lithography system[J]. Laser & Optoelevtronics Progress, 2004, 41(7): 24-30.

[5] 胡建明, 曾爱军, 王向朝. 光栅成像位置传感器中的偏振调制技术[J]. 中国激光, 2006, 33(10): 1397-1401.

    Hu Jianming, Zeng Aijun, Wang Xiangzhao. Polarization modulation technology for a position sensor with grating imaging[J]. Chinese J Lasers, 2006, 33(10): 1397-1401.

[6] 冯金花, 胡松, 李艳丽, 等. 基于叠栅条纹相位解析的纳米检焦方法[J]. 光学学报, 2015, 35(2): 0212005.

    Feng Jinhua, Hu Song, Li Yanli, et al. Nano focusing method based on moire fringe phase analysis[J]. Acta Optica Sinica, 2015, 35(2): 0212005.

[7] 严伟, 李艳丽, 陈铭勇, 等. 基于光闸叠栅条纹的纳米检焦方法[J]. 光学学报, 2011, 31(8): 0805001.

    Yan Wei, Li Yanli, Chen Mingyong, et al. Moire fringebased focusing-test scheme for optical projection lithography[J]. Acta Optica Sinica, 2011, 31(8): 0805001.

[8] 杨桂栓, 陈涛, 张志峰. 基于激光三角法对透明平板厚度测量光线补偿的研究及应用[J]. 中国激光, 2015, 42(7): 0708004.

    Yang Guishuan, Chen Tao, Zhang Zhifeng. Study and application on transparent plate thickness measurement based on laser triangulation with light compensation[J]. Chinese J Lasers, 2015, 42(7): 0708004.

[9] 耿云飞, 陈曦, 金文, 等. 海水折射率对差分激光三角法油膜厚度测量精度的影响[J]. 中国激光, 2015, 42(4): 0408004.

    Geng Yunfei, Chen Xi, Jin Wen, et al. Influence of seawater refractive index on the precision of oil film thickness measurement by differential laser triangulation[J]. Chinese J Lasers, 2015, 42(4): 0408004.

[10] van der Werf J E. Optical focus and level sensor for wafer steppers[J]. J Vac Sci Technol B, 1992, 10(2): 735-740.

[11] Smith D G. Wafer thin film effects in lithographic focus detection[C]. SPIE, 2012, 8550: 85503L.

[12] Hidaka Y, Uchikawa K, Smith D G. Error analysis and compensation method of focus detection in exposure apparatus[J]. Optical Society of America A, 2009, 26(1): 10-18.

[13] Teunissen P A A, Broodbakker P J M, Queens R M G J. Lithographic apparatus, level sensor, method of inspection, device manufacturing method, and device manufactured thereby: US, 7646471[P]. 2010-01-12.

[14] Den Boef A H, Benschop J P H, Brinkhof R, et al. Level sensor, lithographic apparatus, and substrate surface positioning method: US, 8675210[P]. 2014-03-18.

[15] 孙裕文, 李世光, 宗明成. 基于空间分光的纳米级调焦调平测量技术[J]. 光学学报, 2016, 36(5): 0512002.

    Sun Yuwen, Li Shiguang, Zong Mingcheng. Nanoscale focusing and leveling measurement technology based on optical spatial split[J]. Acta Optica Sinica, 2016, 36(5): 0512002.

孙裕文, 李世光, 叶甜春, 宗明成. 纳米光刻中调焦调平测量系统的工艺相关性[J]. 光学学报, 2016, 36(8): 0812001. Sun Yuwen, Li Shiguang, Ye Tianchun, Zong Mingcheng. Process Dependency of Focusing and Leveling Measurement System in Nanoscale Lithography[J]. Acta Optica Sinica, 2016, 36(8): 0812001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!