王翔 1张科鹏 2陈壮 1张彬 1,*[ ... ]赵建华 3
作者单位
摘要
1 四川大学 电子信息学院,四川 成都 610064
2 中国科学院光电技术研究所,四川 成都 610209
3 超光滑表面无损检测安徽省重点实验室,安徽 合肥 230031
针对实际工作中的光学元件表面粒子污染,以米氏理论为基础,分析了在风沙地区空气中污染颗粒(以SiO2为主)对入射激光能量的吸收效应。此外,进一步分析空气洁净度、元件工作面的朝向以及放置时间等对光学元件表面吸收特性的影响。结果表明,空气洁净度等级越高、元件工作面朝上、放置时间越久,光学元件的表面吸收能力越强。研究成果可为实际应用中光学系统的镜面污染控制提供理论参考。
吸收 光学元件 米氏理论 洁净度 absorption optical elements Mie theory cleanliness 
红外与激光工程
2020, 49(4): 0414004
作者单位
摘要
1 四川大学电子信息学院, 四川 成都 610064
2 中国科学院光电技术研究所, 四川 成都 610209
3 超光滑表面无损检测安徽省重点实验室, 合肥知常光电科技有限公司, 安徽 合肥 230031
光学元件在加工及使用过程中引入的麻点或擦痕会严重影响其表面质量。基于Peterson疵病散射理论,将麻点或擦痕引起的散射光分为两部分,即对麻点(或擦痕)内部表面的散射光作漫反射分析,对麻点或擦痕外围轮廓引起的散射光作衍射分析。进一步考虑麻点和擦痕的挡光效应,以及麻点衍射消失的边界条件,通过将疵病散射理论与国家标准GB/T 1185—2006相结合,推导出麻点、擦痕的双向反射分布函数的解析表达式,进而分析了不同疵病级数下的角分辨散射和总散射。研究结果表明:表面疵病的总散射与疵病面积近似成线性正比,进而据此提出了一种基于总散射测量的表面质量检测新方法,并分析了光学元件表面疵病的阈值。
散射 疵病检测 表面疵病 散射光 疵病阈值 
光学学报
2019, 39(7): 0712005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!