胡妙言 1,2,3,4刘凯 1,2,3,4高诗雨 1,2,3,4孙天懿 1,2,3,4[ ... ]徐丽 1,2,3,**
作者单位
摘要
1 南京林业大学 材料科学与工程学院, 江苏 南京  210000
2 南京林业大学 江苏省林产品高效加工利用联合创新中心, 江苏 南京  210000
3 南京林业大学 绿色生物质燃料与化学品江苏省重点实验室, 江苏 南京  210000
4 2019年江苏省研究生工作站:靖江国林木业有限公司 (工作站编号:2019_099), 江苏 靖江 214500
利用响应曲面法 (RSM)系统研究了微波作用时间 (T)、微波功率 (W)、淡竹叶与去离子水的料液比 (R)对微波法制备淡竹叶氮硅自掺杂碳量子点 (N/Si?CQDs)荧光量子产率 (QY)的影响。得到了上述工艺参数对QY的影响显著性次序以及对应的QY回归模型与最佳工艺参数,通过验证实验证明优化结果可靠。采用最佳工艺得到的N/Si?CQDs的平均粒径较小且分布均匀,在水中分散性良好,具有激发依赖的发射特性,荧光稳定性较高,对HEK293细胞具有较低细胞毒性,且可被细胞吸收而照亮细胞从而明确区分细胞质和细胞核,说明该碳量子点可用于细胞成像。该研究不仅为淡竹叶的高值化利用提供了一个新思路,而且对提高生物质碳量子点的微波法制备效率、促进其在细胞成像等生物医学领域的应用具有参考价值。
淡竹叶 碳量子点 微波法 响应曲面法 细胞成像 common lophatherum herb carbon quantum dots microwave method response surface method cell imaging 
发光学报
2022, 43(12): 2001
作者单位
摘要
1 蚌埠学院理学院,安徽 蚌埠 233030;光电材料科学与技术安徽省重点实验室,安徽 芜湖 241000
2 蚌埠学院理学院,安徽 蚌埠 233030
常温常压下,采用波长532 nm的Nd:YAG纳秒激光器激发诱导空气中的铝合金,由高分辨率的光谱仪和ICCD对等离子体发射光谱采集和实现光电转换。研究激光能量、ICCD门延迟和聚焦透镜到样品表面的距离(lens-to-sample distance,LTSD)对谱线信号强度和等离子体电子温度的影响,并分析了产生影响的物理机制。结果表明,固定ICCD门延迟和LTSD,随着激光能量的增大,谱线强度和电子温度均增大;计算结果表明,当激光能量从20 mJ增加到160 mJ时,原子谱线Al I 396.15 nm,Mg I 518.36 nm,离子谱线Mg II 279.54 nm谱线强度相较于20 mJ分别提高了12.83,6.45,10.56倍。固定激光能量和LTSD,ICCD门延迟在100~4 000 ns范围内变化时,随着延迟的增加,谱线强度和等离子体电子温度均呈指数形式衰减。固定ICCD门延迟和激光能量,采用焦距为75 mm的聚焦透镜,研究了LTSD对等离子体参数的影响机理。结果表明,聚焦透镜到样品的距离对等离子体的谱线强度和电子温度有较大的影响。等离子体的特征谱线强度和等离子体的电子温度的变化规律基本一致,分别在聚焦透镜到样品表面的距离为73 mm和79 mm处取得峰值,并在73 mm处对应最大值。
激光诱导击穿光谱 激光能量 ICCD门延迟 聚焦透镜到样品表面距离 谱线强度 电子温度 laser induced breakdown spectroscopy laser energy ICCD gate delay distance between focusing lens and sample surface spectral intensity electron temperature 
强激光与粒子束
2020, 32(6): 061003
作者单位
摘要
1 蚌埠学院理学院, 安徽 蚌埠 233030
2 安徽师范大学光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000
利用激光诱导击穿光谱技术 (Laser-induced breakdown spectroscopy, LIBS), 分析了常见感冒药片复方氨酚烷胺分散片、复方氨酚烷胺片 (感康)、四季感冒片中的微量元素。波长532 nm 的激光聚焦在药片表面产生等离子, 通过采集光纤至光谱仪分光, 再由增强型电荷耦合器件 (Intensified charge-coupled device, ICCD)摄谱, 获得三种感冒药片的 LIBS 光谱。通过对 ICCD 采集延时和门宽等实验参数的优化获得最佳光谱, 检测到氨酚烷胺分散片和四季感冒药中的微量元素有 Ca、Mg、Na, 复方氨酚烷胺片 (感康) 中的微量元素有 Ca、Mg。由发射光谱线的强度、激发能量、跃迁上能级的权重因子以及跃迁几率, 计算得到等离子体的电子温度, 研究了激光诱导三种感冒药片等离子体电子温度的时间演化特性。
激光诱导击穿光谱技术 感冒药片 微量元素 延迟 门宽 电子温度 laser-induced breakdown spectroscopy cold medicine tablets trace elements acquisition delay gate width electron temperature 
大气与环境光学学报
2020, 15(4): 305
王莉 1,2,*周彧 1,2宫昊 1傅院霞 1徐丽 1
作者单位
摘要
1 蚌埠学院理学院,安徽 蚌埠 233030
2 光电材料科学与技术安徽省重点实验室, 安徽 芜湖 241000
为了研究样品温度变化对激光诱导铜等离子体特征参数的影响,利用单脉冲激光诱导激发加热台上的样品形成等离子体, 改变样品温度获得相应的黄铜等离子体发射光谱。分析了样品温度变化时特征谱线强度的变化,并在局部热 平衡(Local thermodynamic equilibrium, LTE)条件下,利用Boltzman方程和Stark展宽计算并获得不同样品温度 条件下等离子体电子温度和电子密度随时间的演化规律,同时讨论了激光诱导金属等离子体光谱增强的原因。 实验结果表明,延迟时间相同时,样品温度越高,谱线强度越强,电子温度和电子密度越大。由此可见, 适当升高样品温度可以提高谱线强度。
激光诱导击穿光谱 样品温度 电子温度 电子密度 ICCD门延迟 laser-induced breakdown spectroscopy sample temperature electron temperature electron density ICCD gate delay 
大气与环境光学学报
2020, 15(2): 110
作者单位
摘要
蚌埠学院理学院, 安徽 蚌埠 233030
为了研究样品温度对激光诱导击穿Cu等离子体特征参数的影响, 以黄铜为研究对象, 在优化的实验条件下采用波长为532 nm的Nd∶YAG纳秒脉冲激光诱导激发不同温度下的块状黄铜, 测量了Cu等离子体的特征谱线强度和信噪比; 同时在局部热平衡条件下利用Boltzmann斜线法和Stark展宽法分析计算了不同的样品温度条件下等离子体电子温度和电子密度。 实验结果表明, 在激光功率为60 mW时, 随着样品温度的升高, Cu的特征谱线强度和信噪比逐渐增加, 样品温度为130 ℃时达到最大值, 然后趋于饱和。 计算表明, 黄铜样品中Cu元素Cu Ⅰ 329.05 nm, Cu Ⅰ 427.51 nm, Cu Ⅰ 458.71 nm, Cu Ⅰ 510.55 nm, Cu Ⅰ 515.32 nm, Cu Ⅰ 521.82 nm, Cu Ⅰ 529.25 nm, Cu Ⅰ 578.21 nm八条谱线在130℃的相对强度相较于室温(18 ℃)下分别提高了11.55倍、 4.53倍、 4.72倍, 3.31倍、 4.47倍、 4.60倍、 4.25倍、 4.55倍, 光谱信噪比分别增大了1.35倍, 2.29倍、 1.76倍、 2.50倍、 2.45倍、 2.28倍、 2.50倍, 2.53倍。 分析认为, 升高样品温度会增大样品的烧蚀质量, 相对于温度较低状态增加了等离子体中样品粒子浓度, 进而提高等离子体发射光谱强度。 所以, 适当升高样品温度能够提高谱线强度和信噪比, 从而增强LIBS技术检测分析光谱微弱信号的测量精度, 改善痕量元素的检测灵敏度。 同时研究了改变样品温度时等离子体电子温度和电子密度的变化趋势。 计算表明, 当样品温度从室温上升到130 ℃的过程中, 等离子体的电子温度由4 723 K上升到7 121 K时基本不再变化。 这种变化规律与发射谱线强度和信噪比变化趋势一致。 分析认为, 这主要是由于在升高样品温度的初始阶段, 激光烧蚀量增大, 等离子体内能增大, 从而导致等离子体电子温度升高。 当激光烧蚀样品的量达到一定值后不再变化, 激光能量被激发溅射出来的样品蒸发物以及尘粒的吸收、 散射和反射, 导致激光能量密度降低, 电子温度趋于饱和, 达到某种动态平衡。 选用一条Cu原子谱线(324.75 nm)的Stark展宽系数计算激光等离子体的电子密度, 同时研究改变样品温度时等离子电子密度的变化趋势, 计算表明在样品温度为130 ℃时, Cu Ⅰ 324.75 nm对应的等离子电子密度相较于室温(18 ℃)条件下增大了1.74×1017 cm-3。 该变化趋势与电子温度的变化趋势一致。 适当升高样品温度使得电子密度增大, 从而提高电子和原子的碰撞几率, 激发更多的原子, 这是增强光谱谱线强度的原因之一。 由此可见, 升高样品温度是一种便捷的提高LIBS检测灵敏度的有效手段。
激光诱导击穿光谱 电子密度 电子温度 信噪比 光谱强度 Laser-induced breakdown spectroscopy Electron density Electron temperature Signal-to-noise ratio Spectral intensity 
光谱学与光谱分析
2019, 39(4): 1247
王莉 1,2徐丽 1,2徐卫青 1姚关心 2[ ... ]崔执凤 2
作者单位
摘要
1 蚌埠学院数学与物理系, 安徽 蚌埠 233030
2 安徽师范大学原子与分子物理研究所, 安徽 芜湖 241000
为了综合比较单双脉冲激光诱导击穿光谱技术(LIBS)在液体中重金属元素的检测效果, 利用自建的液相射流单-双脉冲LIBS技术装置, 对AlCl3水溶液中的Al元素LIBS特性进行测量和分析。 实验中使用两台532 nm Nd∶YAG激光器作为激发光源, 等离子体辐射信号通过光谱仪和ICCD进行采集。 实验研究了单脉冲下Al(396.15 nm)发射谱线的谱线强度随激光能量、 ICCD门延时、 门宽之间的变化关系, 获得了最优化实验参数激光能量为50 mJ, ICCD门延迟为1 200 ns, 门宽为150 ns。 在相同的实验条件下, 实验考察了Al(369.15 nm)发射谱线的谱线强度随双脉冲之间的延时, 激光总能量, ICCD门延时的变化关系, 获得了最优化实验参数为两双脉冲之间的延时为1 000 ns, 激光总能量为50 mJ, ICCD门延时为1 100 ns。 单脉冲和双脉冲条件下获得重金属Al的LIBS检测限分别为26.79和10.80 ppm, 双脉冲LIBS技术使元素检测限下降2倍多。 实验结果表明双脉冲可以提升LIBS技术的探测灵敏度, 为LIBS技术应用于水体中重金属快速检测提供了依据。
激光诱导击穿光谱(LIBS) 单-双脉冲 液体射流 检测限 SP-LIBS DP-LIBS Al Liquid jet Limit of detection 
光谱学与光谱分析
2018, 38(1): 314
王莉 1,2,*徐丽 1,2周彧 2郑贤锋 2[ ... ]崔执凤 2
作者单位
摘要
1 蚌埠学院数学与物理系, 安徽 蚌埠 233030
2 安徽师范大学原子与分子物理研究所, 安徽 芜湖 241000
利用自建的液相射流和双脉冲激光诱导击穿光谱技术(LIBS)实验装置,测定了AlCl3水溶液和混合溶液中Al元素的单脉冲和双脉冲激光诱导击穿光谱,给出了单、双脉冲下的最优LIBS实验参数,在最优化实验条件下,得到AlCl3水溶液和混合溶液中Al元素质量分数的单、双脉冲LIBS检测限分别为26.79×10-6、28.85×10-6和11.93×10-6、14.46 ×10-6,双脉冲LIBS检测灵敏度比单脉冲明显提高。
光谱学 激光诱导击穿光谱 液体射流 双脉冲 检测限 
中国激光
2014, 41(4): 0415003
作者单位
摘要
中国农业大学国家玉米改良中心, 北京100193
应用近红外光谱分析技术, 针对玉米诱导过程中产生的亚正常种子, 发展亚正常种子的单籽粒生活力判别方法。 该研究应用了一种基于Kolmogorov-Smirnov检验的方法(KS法)对近红外光谱进行特征提取, 并比较了十种采用不同预处理数据和特征提取方法建立的模型的判别性能, 每种模型试验了1134种参数组合, 并对采用多种方法和参数组合建立的模型进行交叉验证。 结果表明, 采用矢量归一化预处理, KS法提取特征波长, 并去除低信噪比区域的数据建立的模型判别效果最好。 发芽籽粒和不发芽籽粒的平均正确识别率分别达到92.20%和84.86%。 该方法将发芽籽粒的筛选准确率由随机筛选的不足40%提高至85%以上, 可显著提高筛选效率。
近红外光谱 玉米种子 生活力 单倍体诱导 特征提取 Near infrared spectroscopy Maize seed Viability discrimination Haploid induction Qualitative analysis 
光谱学与光谱分析
2013, 33(6): 1501
作者单位
摘要
1 山东大学环境科学与工程学院,济南,250100
2 山东大学晶体材料国家重点实验室,济南,250100
3 中科院上海技术物理所,上海,21000
本文用熔融退火法生长了热电材料掺镧方钴矿(LaxFe3CoSb12)晶体.用背散射方法测定了不同掺镧量晶体的拉曼光谱.我们认为稀土镧原子占据了方钴矿结构中的空位,这些填充空位的离子参与结构中的晶格振动,使拉曼谱线位移并加宽.随着含镧量的增加,镧原子振颤自由度降低,谱线的加宽程度减小.
拉曼散射 方钴矿型晶体 振颤运动 Raman Scattering LaxFe3CoSb12 Crystal Rattling 
光散射学报
2002, 14(3): 169

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!