作者单位
摘要
1 集美大学港口与环境工程学院, 福建 厦门 361021
2 温州大学机电工程学院, 浙江 温州 325035
3 温州大学电气与电子工程学院, 浙江 温州 325035
近红外光谱分析中多变量校准模型的建立依赖于校准建模的光谱样本。 然而, 近红外光谱测量环境的变化会导致同一被测物的光谱样本的偏移。 为了削减光谱偏移后重新建立校准模型的成本, 提出一种基于深度自编码器(DAE)的非线性光谱转移方法, 以端到端的形式实现不同测量环境之间的光谱转移, 避免已有的线性光谱转移方法在非线性偏移光谱时效果不佳的情况。 该方法在操作前不需要对光谱进行预处理和特征提取等操作, 可以实现原始光谱之间的转移, 是首个端到端的非线性光谱转移方法。 为了实现光谱空间的有效转移, 设计了一种基于条件概率和参数最大似然法的误差函数惩罚项, 结合梯度反向传播算法优化深度自编码的网络参数。 为了验证该方法的有效性, 引入两个公共的近红外光谱数据集, 分别是药片数据集和玉米数据集。 利用本方法进行光谱转移的过程主要有: 根据Kennard-Stone(KS)算法分别将两个数据集划分为校准集、 验证集和测试集; 用校准集中的光谱样本输入深度自编码器, 根据设计的误差函数求出误差, 并用反向传播法迭代训练网络参数, 直至模型最优; 将预测集样本输入训练好的DAE转移模型, 可以发现转移后的光谱与相应的目标光谱谱线基本重合, 这说明该设计的转移模型的有效性。 最后, 为了进一步验证本方法的优越性, 将该方法与经典的线性转移算法光谱空间变换(SST)和分段直接标准化(PDS)进行比较。 这三种算法得到的转移光谱分别作为测试样本, 输入已建立的偏最小二乘(PLS)多变量校准模型, 通过比较预测均方根误差(RMSEP), 可以发现该方法在多变量校准模型中的预测结果的均方根误差均小于SST和PDS, 分别提高了5.7%和10.1%, 表明由非线性深度自编码器转移的光谱样本具有高效和实用的特点。
近红外光谱 模型转移 多变量校准 深度自编码器 Near infrared spectroscopy Model transfer Multivariate calibration Deep auto-encoder 
光谱学与光谱分析
2020, 40(7): 2313
朱德华 1,2,*王满仓 1,2徐玲杰 1,2陈孝敬 3[ ... ]蔡燕 1
作者单位
摘要
1 温州大学激光与光电智能制造研究院, 浙江 温州 325000
2 温州大学机电工程学院, 浙江 温州 325035
3 温州大学数理与电子信息工程学院, 浙江 温州 325035
原位分析和在线检测是激光诱导击穿光谱(LIBS)技术的一大优势, 但是, 在野外环境中, 人们无法对样品进行统一预处理, 面对各种形态的待测样品如何保证LIBS的检测精度是函待解决的一大难题。 提出一种多谱线内定标的方法来解决上述问题, 即通过求解多条分析谱线的强度和与内标元素谱线的强度比值来建立定标曲线, 进而降低光谱信号波动带来的误差, 提高线性相关性和检测精度。 实验中以铅黄铜合金样品为例, 采用LIBS对厚度不一(最大变化值为±2 mm)的铅黄铜样品中的Pb元素进行了定量检测研究, 并分别采用传统定标法和多谱线内定标法对这种不规则样品进行校正和建立定标曲线。 实验发现, 对于不规则样品, 传统定标法的检测精度大大降低, 定标曲线没有明显的线性关系。 当采用单条谱线的内定标方法时, 定标曲线线性相关度大大提高, 校正决定系数达到0.724 89。 而采用多条谱线内标方法(考虑多条分析谱线的相对强度总和)计算发现, 当选取5条Pb谱线(Pb 261.42 nm, Pb 280.20 nm, Pb 368.35 nm, Pb 405.78 nm和Pb 520.14 nm)进行计算时, 定标曲线线性拟合度达到0.984 6, 由此可见该方法消除了样品不规则所带来的光谱强度波动误差, 显著提高了测量精度。 虽然继续增加分析谱线数目可以进一步提升线性相关度, 但是也会增加计算的复杂度, 所以选择合适的分析谱线是十分重要的。 此外, 通过多谱线内标法也能一定程度上消除基体效应和光谱干扰等影响, 是一种简单有效且具备普适性的数据处理方法。 当然, 该方法也存在一定的局限性(如样品成分分布极不均匀、 样品表面极不规则致使激光能量低于击穿阈值等), 不过通过调整和优化检测装置方案(例如增大激光能量、 增大聚焦光斑、 采用长焦距聚焦透镜等)可以更好的发挥该方法的优势。 该研究内容可以为LIBS原位检测和在线检测的应用提供一种新思路。
激光诱导击穿光谱 多谱线内定标 检测精度 在线检测 原位检测 Laser-induced breakdown spectroscopy Multi-line calibration method Detection precision On-line detection In-situ test 
光谱学与光谱分析
2019, 39(10): 3159

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!