万凡 1,2钟悦 1,*屈中权 1徐稚 1[ ... ]彭洋 1,2
作者单位
摘要
1 中国科学院云南天文台,昆明 650216
2 中国科学院大学,北京 100049
为了精确测量非消色差波片的延迟量与快轴方位角,基于拟合光强法与光谱分析法建立了一套高精度测量系统,实现了特定波长下非消色差波片延迟量在0°360°的高精度测量。对波片延迟量的测量方法及误差来源进行了详细的模拟分析。在拟合光强法下,重点仿真了光源光强抖动变化、检偏器初始安装精度、旋转波片定位精度等随机误差与各项系统误差对测量精度的影响,详细分析了拟合光强法不能精确测量波片延迟量为180°的原因。在光谱分析法下模拟了光源光强抖动变化、光谱的单色精度、检偏器定位精度引入的测量误差。在测量系统的建立中对上述两种测量方法影响较大的误差均进行了抑制,并对探测器的光电响应非线性效应进行了矫正。最后利用该测量系统对标称的λ/4波片、0.356λ波片、λ/2波片进行了相关实测并利用非线性最小二乘法对测量数据进行处理,获得了参考波长在632.8 nm的各波片的相位延迟量与快轴方位角。由该测量系统的实测结果可知:本文采用的拟合光强法测量λ/4波片、0.356λ波片延迟量的测量误差小于0.05°,测量精度比传统光强测量法高一个数量级以上。对于λ/2非消色差波片,在该测量系统下切换终端光强接受设备并采用光谱分析法对其进行测量,测得其延迟量误差小于0.02°,远小于拟合光强法的测量误差0.70°,克服了光强法无法精确测量波片延迟量为180°的缺陷。实测结果与模拟仿真相符。
测量 高精度 波片 相位延迟 方位角 误差分析 最小二乘法 Measurement High precision Waveplate Phase retardance Fast-axis position angel Error analysis Least squares fitting 
光子学报
2023, 52(5): 0552215
作者单位
摘要
1 中国科学院光电技术研究所,四川 成都 610209
2 电子科技大学光电科学与工程学院,四川 成都 610054
3 中国科学院云南天文台,云南 昆明 650216
为改善sCMOS读出电路工艺偏差导致的非均匀性问题,本文提出了自适应多点非均匀性校正方法。算法首先以搜寻最小范数点、阈值比较的方式分别确定最优分段点的位置以及最佳分段数量,然后再根据这些分段信息在各区间段分别进行两点校正。通过该自适应方法可有效改善传统多点法中由于分段参数选择不当导致的校正性能下降。同时,为实现实时的非均匀性校正,文中根据自适应多点法的算法特点,提出了一种与之匹配的嵌入式数据串流校正方案,可在不影响现有相机采集结构以及采集速率的情况下实现非均匀性的校正。
非均匀性 多点法 自适应 实时处理 non-uniformity multipoint adaptive real-time processing 
光电工程
2021, 48(5): 210036
陈双远 1,2,*王飞翔 1,3许方宇 1郭杰 3[ ... ]王远方舟 1,3
作者单位
摘要
1 中国科学院云南天文台 天文光电实验室, 云南 昆明 650216
2 中国科学院国家天文台FAST运行和发展中心, 贵州 平塘 558300
3 云南师范大学 云南省光电信息技术重点实验室, 云南 昆明 650500
4 云南北方驰宏光电有限公司, 云南 昆明 650217
5 河南师范大学 物理学院, 河南 新乡 453007
采用自制的M′波段(4.605~4.755 μm)红外辐射测量系统对阿里观测站、德令哈观测基地和怀柔观测基地的大气辐射进行实地测量, 并对结果进行拟合和误差分析。首先, 基于黑体定标结果和辐射传输方程, 得到输出有效读数与平均大气透过率和天顶角的关系公式; 在三个站点对不同天顶角下的大气红外辐射进行扫描测量, 利用上述公式, 拟合出M′波段平均大气透过率。结果表明, 三地透过率的加权平均值分别为0.805、0.758、0.650, 透过率随时间的起伏分别为0.081、0.250、0.073, 高海拔的阿里观测站透过率最高。用MODTRAN软件模拟的平均透过率分别为0.851、0.805、0.615, 与实测结果接近; 误差分析表明: 有效读数越大, 传递误差越小, 此方法的理论误差优于10%。文中提供了一种不依赖气象数据, 实时获得大气透过率的方法。
大气透过率 大气辐射测量 红外系统 误差分析 atmospheric transmissivity atmospheric radiance measurement infrared systems error analysis 
红外与激光工程
2019, 48(12): 1203006
王瑞 1,2徐稚 1陈宇超 1,2金振宇 1[ ... ]季凯帆 1,*
作者单位
摘要
1 中国科学院云南天文台, 云南 昆明 650216
2 中国科学院大学, 北京 100049
为了实现新真空太阳望远镜(NVST)多波段图像0.1″精度的视场匹配,提出了针孔光阑视场定标的方法,并在NVST光球[TiO(705.8 nm)]通道和色球[Hα(656.28 nm)]通道上进行了实验分析。采用11×11点阵的针孔阵列光阑,对两通道视场之间的旋转、放缩和平移关系进行了定标。通过仿射变换实现两通道太阳图像的高精度视场匹配,精度可达0.031″。虽然匹配残差在整个视场内(约为2')存在不均匀性,视场边缘最大残差为0.076″。定标参数的数值会随着光学平台位置的变化而改变,造成了0.05″的视场匹配差异,但这些匹配差异都在分辨率要求的精度之内。对TiO通道和Hα通道实测数据的分析也证明了上述方法的精度估计。
成像系统 地基太阳望远镜 图像匹配 针孔光阑 太阳观测 
光学学报
2018, 38(1): 0111002
作者单位
摘要
1 中国科学院云南天文台, 云南 昆明 650011
2 云南师范大学, 云南 昆明 650031
简要介绍红外技术在天文观测中的意义、天文观测对红外探测器件以及红外光学系统的独特要求。重点归纳和总结了天文观测中所关注的主要性能指标, 并且给出部分指标的测试方法, 为红外技术运用于天文观测建立基础。
红外天文观测 天文红外探测器 焦平面阵列 infrared observation infrared focal plane detector focal plane array 
红外技术
2014, 36(11): 868
作者单位
摘要
1 中国科学院国家天文台/云南天文台, 云南 昆明 650011
2 中国科学院大学, 北京 100049
在光谱仪设计及误差分析理论的基础上,提出了一种基于数值模拟的系统装调误差分析方法。利用光线追迹方法分析了一米太阳塔多波段光谱仪系统中狭缝、光栅、准直镜和成像镜的安装误差对光学系统像质的影响。分析结果表明,狭缝倾斜0.5° μs范围内可以调整准直镜倾斜来校正其引入的彗差;狭缝自旋小于10″使谱线倾斜小于1 pixel;准直镜的离焦小于±10 mm,可以通过调整CCD的位置进行补偿,并给出了光谱仪观测结果。
光学器件 装调 一米太阳望远镜 多波段光谱仪 误差分析 数值模拟 
中国激光
2012, 39(s2): s208007

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!