作者单位
摘要
1 吉林大学地球探测科学与技术学院, 吉林 长春 130026
2 95956部队, 陕西 西安 710061
3 中科遥感科技集团有限公司, 天津 300384
测试了采集自黑龙江省塔河地区的300块并进行抛光处理后的岩石样本350~2 500 nm间光谱反射率、 磁化率、 密度 、 孔隙率和金属元素含量(Fe, Mn, Ti, Zr, V, Zn, Pb, Nb, Co, Bi), 并计算了其光谱吸收深度。 在此基础上, 以相关性分析方法为依据, 探讨了所采集岩石样本的金属元素含量、 物性参数、 反射光谱间的特征响应关系, 计算了岩石样本金属元素和光谱吸收深度间的相关性系数、 物性参数与光谱反射率的相关性系数, 获得成果如下: (1)在410 nm附近, 闪长玢岩各金属元素与吸收深度间的相关系数都存在尖锐的波峰和波谷, 相关系数达到极值。 (2)岩石样本金属元素和吸收深度的相关性研究中, 侵入岩的相关系数则显著高于其他岩石类型。 (3)1 400 nm附近, 岩石样本金属元素与吸收深度、 各物性参数与光谱反射率的相关性都存在尖锐的波峰和波谷。 其中磁化率、 密度、 视孔隙率与光谱反射率的相关系数在可见光范围内波动变化较大。 (4)在1 900~2 500 nm范围内, 金属元素与光谱吸收深度、 各物性参数与光谱反射率间的相关系数波动较大, 其中金属元素和光谱吸收深度呈显著相关, 相关系数达到极值。 进一步研究了岩石金属元素和物理特性与其光谱特征的关系, 对于不同岩性的不同波段的反射率与不同金属元素间分布状态的探测, 具有一定意义。
岩石光谱反射率 吸收深度 磁化率 相关系数 金属元素 Rock spectral reflectance Absorption depth Susceptibility Density Correlation coefficient Metal element 
光谱学与光谱分析
2017, 37(8): 2569

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!