作者单位
摘要
1 上海工程技术大学 机械与汽车工程学院,上海20620
2 格鲁斯特大学 计算与工程学院,英国 切尔滕纳姆GL50 RH
3 中国科学院 长春光学精密机械与物理研究所,吉林长春100
4 上海交通大学 机械与动力工程学院 机械系统与振动国家重点实验室,上海20020
为消除压电驱动柔性微定位平台高精控制对平台不确定动力学模型的依赖性,提出了一种数据驱动无模型迭代前馈补偿和自适应陷波滤波结合的控制方法来提高平台的跟踪性能。首先,建立了数据驱动无模型迭代前馈控制器,提高系统对噪声和其他干扰的鲁棒性,同时,证明了在无模型迭代前馈作用下,连续参考输入跟踪误差的有界性和闭环系统的稳定性;其次,构建了自适应陷波滤波器来消除平台谐振的影响,对误差信号进行快速傅里叶变换,并设计谐振频率在线提取算法,实现对陷波滤波器参数的在线实时整定,来进一步提升轨迹跟踪精度;最后,利用所设计的无模型迭代前馈控制器和自适应陷波滤波器对压电微动台进行轨迹跟踪实验。实验结果表明:在跟踪三角波信号时,与单独比例-积分(Proportional Integral,PI)控制和结合自适应陷波滤波器的PI控制相比较,最大跟踪误差分别减小78.25%和70.83%,能够有效提升平台的稳定性和跟踪精度。
压电微动台 数据驱动迭代前馈 在线谐振抑制 自适应陷波滤波器 piezoelectric micro-motion stage data-driven iterative feedforward online resonance suppression adaptive notch filter 
光学 精密工程
2024, 32(6): 833
作者单位
摘要
1 上海工程技术大学 机械与汽车工程学院,上海20620
2 格鲁斯特大学 计算与工程学院,英国 切尔滕纳姆GL50 RH
3 中国科学院 长春光学精密机械与物理研究所,吉林长春100
4 上海交通大学 机械与动力工程学院 机械系统与振动国家重点实验室,上海20020
为了解决三自由度压电驱动纳米偏摆台中的多轴耦合与迟滞问题,设计了一种可以同时表征多个压电驱动器间耦合效应及其自身迟滞效应的耦合迟滞模型,并利用其逆模型进行前馈补偿以提升平台的定位和轨迹跟踪精度。首先,搭建了三自由度压电驱动偏摆台的控制系统并建立其运动学模型,将末端平台三自由度运动转化为三个压电驱动器的输出。然后,建立基于Prandtl-Ishlinskii模型的耦合迟滞模型,并对该模型及其逆模型的参数进行辨识。最后,通过开环逆模型前馈补偿来验证模型的有效性,并利用结合逆模型前馈和反馈的复合控制方法进行轨迹跟踪控制。实验结果表明:逆模型开环前馈补偿使三个压电驱动器间最大耦合位移均降低了70%以上,证明了所建立耦合迟滞模型的有效性,结合闭环反馈的复合控制方法对空间轨迹进行跟踪的最大均方根误差仅为0.06 mrad和0.42 μm,相比单纯闭环反馈分别减少了72%和87.5%,最大误差也减少了76%以上,有效消除了平台中耦合迟滞的影响,提高了平台的定位精度。
压电偏摆台 压电驱动器 耦合迟滞模型 逆补偿 跟踪控制 tip-tilt-piston piezoelectric stage piezoelectric actuator coupled hysteresis model inverse compensation tracking control 
光学 精密工程
2023, 31(20): 2964
作者单位
摘要
1 上海工程技术大学 机械与汽车工程学院,上海 松江20620
2 格鲁斯特大学 计算与工程学院,英国 切尔滕纳姆GL50 RH
3 中国科学院 长春光学精密机械与物理研究所,吉林长春100
4 上海交通大学 机械与动力工程学院 机械系统与振动国家重点实验室,上海20020
为了解决传统微定位平台运动范围小、寄生运动和交叉轴耦合严重导致运动精度低等问题,提出了一种音圈电机驱动的全簧片式大行程、空间多自由度并联柔性解耦微定位平台。首先,介绍了含簧片型柔性球铰的大行程多自由度并联柔性机构的结构和变形原理。接着,以空间三自由度为例,推导了动平台的运动学方程,建立了机构的输入刚度模型,并基于柔度矩阵法对柔性球铰进行了柔度建模和设计,从而确定了微定位平台的参数。此外,分别对三自由度方向进行了系统动力学模型辨识,并基于模型设计了一种相位超前PI反馈控制结合滑模前馈控制的复合控制器。最后,搭建了平台实验系统来验证其轨迹跟踪性能。实验结果表明:与经典的PID控制相比,该复合控制方法能够使得轨迹跟踪性能提高95%以上,加入的滑模前馈也能够有效消除单纯反馈控制产生的相位滞后。并且,所提出的多自由度微定位平台能够实现±3.23 mm×±21.50 mrad×±20.30 mrad的运动范围,具有行程大、稳定性好和精度高等特点,可以用于许多需要大行程高精度的空间定位场合。
并联柔性机构 音圈电机 大行程 簧片型柔性球铰 相位超前PI控制 滑模控制 parallel flexure mechanism voice coil motor large stroke leaf-spring type flexure spherical joint phase advanced PI controller sliding mode controller 
光学 精密工程
2023, 31(18): 2675
作者单位
摘要
1 上海工程技术大学 机械与汽车工程学院,上海20600
2 中国科学院 长春光学精密机械与物理研究所,吉林长春130033
3 格鲁斯特大学 计算与工程学院,英国 切尔滕纳姆GL50 2RH
4 上海交通大学 机械与动力工程学院 机械系统与振动国家重点实验室,上海20020
为了克服音圈电机电磁驱动柔顺微定位平台在大行程范围内存在的低阻尼谐振和动力学特性差异等问题,利用综合数据驱动频域逆迭代前馈补偿和含相位超前校正PI反馈控制的复合闭环频域逆迭代学习控制方法对其进行高速高精控制。首先,搭建了音圈电机驱动双平行四边形柔性机构微定位系统,并针对不同工作点位进行了动力学模型辨识。然后,为提高系统相对稳定性,设计了含相位超前校正环节的PI反馈控制器。同时,利用输入输出数据对系统频响函数进行在线逆估计并进行前馈补偿,来进一步消除谐振的影响。最后,利用所提出的控制方法进行了跟踪实验并与其它方法进行了对比。实验结果表明,提出的控制方法对三角波期望轨迹的最大跟踪误差为0.175%,相比于PID控制、相位超前PI控制、传递函数逆模型前馈控制,跟踪均方根误差分别减少了8.75,5.43和2.21倍,能够较好满足大行程微纳米定位跟踪精度高、速度快、抗干扰能力强的要求。
音圈电机 微定位平台 柔性机构 相位超前 频域逆迭代 voice coil motor micro-positioning stage compliant mechanism phase-lead frequency-domain inverse iteration 
光学 精密工程
2021, 29(9): 2149
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
光刻物镜硅片刻蚀过程中的Z5像散会使光刻物镜波像差产生严重的劣化。为了对像散进行实时补偿, 提出一种Z5像散主动补偿系统。该系统由实时数据平台、驱动力系统、柔性支撑结构和光学透镜构成。采用球面干涉仪作为光学透镜表面面形的检测设备, 利用最小二乘法及线性叠加原理确定驱动参数与面形关系。实验进行了主动补偿系统的驱动器响应函数测试、补偿行程测试、补偿精度测试、补偿分辨率测试。结果表明, 系统Z5像散补偿行程达到735 nm, Z5像散补偿精度小于2 nm, 引入的高阶像差小于1 nm, 像散补偿分辨率为2 nm, 该系统能够有效补偿光刻物镜系统波前像差, 使光刻物镜满足像质要求。
光学设计 光刻物镜 热像差 主动光学 像散 响应函数 
光学学报
2017, 37(3): 0322003
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室超精密光学工程研究中心,吉林 长春 130033
由于光刻投影物镜装调中电容传感器的线性度指标不能够满足位移调节精度的需求,本文提出了一种提高电容传感器测量线性度的方法。该方法采用压电驱动器提供位移进给;采用高精度激光测长干涉仪校准电容传感器的线性度,提供位移反馈以保证运动控制精度。采用高阶曲线拟合方法得到拟合系数对传感器线性度进行在线标定;对标定实验中的环境、安装、机构以及控制等进行不确定度分析与评定以保证电容传感器的线性度测量精度;最后进行电容传感器线性度的标定实验。实验结果表明: 本文提出的线性度标定方法能够减小各误差项对于测量结果的影响,标定后传感器线性度由0.047 14%提高至0.004 84%,近一个数量级,并且线性度重复性较高,重复性偏差为0.38 nm,全行程内线性度的合成不确定度为5.70 nm,能够满足光刻物镜中位移控制精度的需求。
电容传感器 位移传感器 标定 线性度 不确定度 光刻投影物镜 capacitance sensor displacement sensor calibration linearity uncertainty lithographic projection objective 
光学 精密工程
2015, 23(9): 2546
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
由于开闭环迭代学习控制方法能在加快收敛速度的情况下降低跟踪误差, 本文利用该控制方法来提高压电驱动器(PZT)的高频轨迹跟踪精度。首先, 提出了离散时间下的开环P型结合闭环PI型的迭代学习律, 并且给出了基于该学习律的收敛性条件。然后, 设计了用于PZT系统的离散开闭环迭代学习控制器。最后, 针对50 Hz单频和25 Hz+50 Hz复频三角波轨迹进行了跟踪控制实验。实验结果表明: 所提出的迭代学习控制器对上述2种轨迹的最大跟踪误差分别为10.6 nm和12.5 nm, 相对于PID控制器, 分别降低了96.25%和95.62%。结果显示: 提出的控制方法易于实现, 无需准确的PZT迟滞和系统模型就可以获得很高的跟踪精度, 能有效地满足高频和复频轨迹跟踪的精度要求。
压电驱动器 开闭环 迭代学习控制 迟滞 piezoelectric actuator PZT PZT open-closed loop iterative learning control hysteresis 
光学 精密工程
2014, 22(2): 414
李朋志 1,*葛川 1苏志德 1,2闫丰 1[ ... ]杨怀江 1
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100039
针对压电陶瓷驱动器(PZT)的迟滞非线性对周期性超精密跟踪精度的影响, 对基于Takagi-Sugeno(T-S)型模糊规则的动态模糊系统( DFS)前馈+PI控制方法进行了研究。介绍了DFS模型前提部分和结论部分的辨识方法; 结合直接逆模型控制和迭代学习控制的思想, 提出了周期性轨迹跟踪的DFS前馈+PI控制方法。最后, 针对20 Hz的三角波和正弦波期望轨迹进行了跟踪控制实验。实验结果表明: 提出的控制方法对三角波和正弦波期望轨迹的最大跟踪误差分别为0.25%和0.27%, 相对于PI控制, 跟踪精度分别提高了52倍和64倍,而最大跟踪绝对误差分别降低到5.1 nm和5.5 nm。结果显示这种控制方法易于实现, 周期性轨迹跟踪精度高。
压电陶瓷驱动器(PZT) 迟滞 动态模糊系统 前馈 轨迹跟踪 piezoelectric ceramic actuator(PZT) hysteresis dynamic fuzzy system feed-forward trajectory tracking 
光学 精密工程
2013, 21(2): 394

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!