作者单位
摘要
1 中国海洋大学信息科学与工程学部物理与光电工程学院, 山东 青岛 266100
2 中国科学院海洋研究所, 中国科学院海洋地质与环境重点实验室&深海极端环境与生命过程研究中心, 中国科学院海洋大科学研究中心, 山东 青岛 266071
旨在实现对海洋牧场水下底栖动物的原位识别, 使用随机森林算法实现识别分类检测, 对目标生物进行分类识别分析, 深入挖掘数据, 提高工作效率和决策可靠性。 利用研发的水下高光谱成像分析仪, 在不同的水下环境中通过获取五种海洋牧场常见经济动物(虾夷扇贝、 栉孔扇贝、 脉红螺、 皱纹盘鲍、 仿刺参)的高光谱数据, 归一化处理后运用机器学习中的随机森林(RF)、 基于主成分分析的随机森林(PCA-RF)、 基于递归特征消除的随机森林(RFE-RF)三种随机森林算法对五种底栖动物进行分类识别以及对比分析。 通过RF的变量重要性排序, 筛选出排名较高, 对模型贡献度高的波段所对应的反射谱强度数据, 再将排名靠前的特征波段数据输入分类器中, 通过优化参数, 得到分类准确度。 将数据的分类结果输出混淆矩阵, 可以看到五种样品的识别情况。 脉红螺样品识别精度最低, 为64%; 仿刺参与栉孔扇贝的识别精度最高, 达到了100%; 虾夷扇贝与皱纹盘鲍的识别精度分别为91%与96%。 三种方法最终得到的分类精度分别为: RF 90.13%; PCA-RF 95.20%; RFE-RF 98.74%, 达到了较为理想的分类效果, 体现了随机森林算法运用在水下高光谱数据分类研究的可行性。
随机森林 高光谱成像 分类 原位识别 底栖动物 特征选择 Random Forest Hyperspectral imaging Classification In situ identification Benthic fauna Feature selection 
光谱学与光谱分析
2023, 43(10): 3015
梁政委 1,2,3,*杜增丰 1,3李超伦 1,2,3王敏晓 1,2,3[ ... ]阎军 1
作者单位
摘要
1 中国科学院海洋研究所, 中国科学院海洋地质与环境重点实验室, 中国科学院海洋研究所深海极端环境与生命过程研究中心, 山东 青岛 266071
2 中国科学院大学, 北京 100049
3 中国科学院海洋大科学研究中心, 山东 青岛 266071
4 青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室, 山东 青岛 266061
贻贝对各种海洋环境具有广泛适应性, 范围从浅海跨越到深海热液、 冷泉等极端环境。 贻贝主要通过其足组织分泌的蛋白形成足丝附着于岩石等固体表面, 这种蛋白是一种可再生、 不受水环境影响的性能良好的天然生物胶黏剂, 得益于分泌蛋白的性质, 足丝在水下具有黏附性强、 韧性高、 耐水性优良等特性, 在生物材料学、 医学等方面具有很好的开发潜力和应用前景, 已经是国内外研究热点之一。 拉曼光谱是一种非接触的、 无损的可以提供分子生物化学信息的检测技术。 足丝是贻贝足腺体的外在表达形式, 结合扫描电镜和共聚焦显微拉曼光谱技术, 从贻贝足丝的表观差异到贻贝足腺体的分泌蛋白组分和分布特征, 基于深海和浅海贻贝足丝的扫描电镜表征的表观形态差异, 对两种贻贝足组织分别进行共聚焦显微拉曼光谱检测, 得到两种贻贝的3个腺体的拉曼光谱和腺体局部区域的2D拉曼彩色分布图, 从外在表现形式足丝到内部足腺体分布, 通过对比两种贻贝的3个腺体的成分以及相对分布, 分析造成两种贻贝足丝差异的内在腺体分布情况, 此外结合两种贻贝生存环境的差异, 认为贻贝的足丝外观差异以及其内部腺体分布是贻贝应对浅海和深海冷泉完全不同理化环境的一种环境适应机制。 基于实验结果得到如下结论, 拉曼光谱表明两种贻贝足腺体组成: 表征核心腺体的amide Ⅲ信号位于1 242和1 269 cm-1位置的2个峰的峰强度相对其他两个峰(1 318和1 337 cm-1)较高, 表现为有序高级的蛋白构象, 外皮和粘附盘腺体含有丰富的酪氨酸(643, 830, 850和1 615 cm-1)和3, 4-二羟基苯丙氨酸(多巴, DOPA, 785 cm-1); 浅海贻贝在1 043 cm-1位置有高强度的胶原蛋白信号。 拉曼成像呈现两种贻贝腺体分布特征: 深海贻贝表现为较为集中的腺体分布, 浅海贻贝腺体分布较为分散, 表明贻贝为适应不同环境形成不同的腺体分布机制。 由此可见, 拉曼光谱可以用于研究不同环境下生存的贻贝的足腺体分布特性, 并在生物样品微观分析中更多的应用。
共聚焦显微拉曼 贻贝足腺体 粘附蛋白 Confocal Raman spectroscopy Mussel foot gland Adhesive protein 
光谱学与光谱分析
2020, 40(3): 755
崔楠楠 1,2,3,*杜增丰 1,3张鑫 1,2,3,4栾振东 1,3[ ... ]阎军 1,3
作者单位
摘要
1 中国科学院海洋研究所, 中国科学院海洋地质与环境重点实验室, 中国科学院海洋研究所深海极端环境与生命过程研究中心, 山东 青岛 266071
2 中国科学院大学, 北京 100049
3 中国科学院海洋大科学研究中心, 山东 青岛 266071
4 青岛海洋科学与技术试点国家实验室, 海洋地质过程与环境功能实验室, 山东 青岛 266061
贻贝是广泛分布于全球水域的物种, 从近海海域到深海热液、 冷泉等极端环境。 贻贝分泌碳酸钙矿物形成介壳保护软体组织, 介壳是一种天然纳米复合材料, 具有优异的力学性能, 在生物材料、 组织工程以及仿生学等方面具有很好的应用前景, 已经成为国内外研究热点之一。 拉曼光谱是一种非破坏、 非接触及多组分同时测试的检测技术, 可以提供矿物成分信息。 利用共聚焦显微激光拉曼技术对不同环境下(台西南冷泉繁茂区、 Desmos热液区、 实验室养殖及大连近海海域)生长的贻贝介壳进行检测, 得到四种环境中生存的贻贝介壳珍珠层的拉曼光谱和介壳横截面局部区域的线扫趋势图及二维拉曼成像图。 基于实验结果得到以下结论, 四种环境中生存的贻贝介壳的棱柱层和珍珠层矿物为碳酸钙, 其中棱柱层矿物组成均为方解石, 拉曼测试方解石特征峰位于711和281 cm-1附近, 而介壳珍珠层虽然主要为碳酸钙, 但不同环境下生长的贻贝珍珠层的矿物组成存在一定差别: 大连近海贻贝珍珠层矿物为文石, 拉曼测试文石特征峰位于706和206 cm-1附近, 结晶程度差。 热液区生长以及实验室养殖贻贝珍珠层矿物也为文石, 特征峰位于706和206 cm-1附近, 但结晶程度相对较好。 台西南冷泉繁茂区贻贝珍珠层主要为文石(706和206 cm-1), 并含少量方解石, 拉曼测试方解石特征峰位于711和281 cm-1附近。 通过对比四种环境中贻贝介壳的矿物组分以及相对分布, 结合生存环境的差异, 认为介壳矿物组成差异是贻贝应对深海冷泉、 热液不同理化环境的一种环境适应机制。 测试结果表明贻贝生长环境压力对珍珠层矿物组成有较大影响。 研究表明共聚焦显微拉曼光谱是一种快速、 高效的用于研究不同环境下生存的贻贝的介壳矿物组成的技术手段。 这为研究深海贻贝生命过程与适应机制提供了重要的参考资料。
贻贝 共聚焦显微激光拉曼 方解石 文石 Mussel The confocal Raman spectroscopy Calcite Aragonite 
光谱学与光谱分析
2020, 40(3): 750
杜增丰 1,2,*张鑫 1,2,3郑荣儿 4
作者单位
摘要
1 中国科学院海洋研究所中国科学院海洋地质与环境重点实验室深海极端环境与生命过程研究中心, 山东 青岛 266071
2 中国科学院海洋大科学研究中心, 山东青岛 266071
3 青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室, 山东 青岛 266237
4 中国海洋大学信息科学与工程学院, 山东 青岛 266003
拉曼光谱是一种分子指纹光谱, 在物质成分识别和定量分析领域已得到广泛应用, 近年来也逐渐应用于深海极端环境 的原位探测。回顾了激光拉曼光谱技术的发展历程, 介绍了国内外已经研发的深海激光拉曼光谱探测系统, 并着重介绍 了各系统在深海冷泉、热液等极端区域对喷口流体、沉积物孔隙水、自生碳酸盐岩、水合物等目标物的原位探测和 应用, 最后总结了限制拉曼光谱技术在深海取得更多应用的因素, 可以为拉曼光谱技术未来的发展提供参考。
拉曼光谱 冷泉 热液 原位探测 Raman spectroscopy cold seep hydrothermal vent in situ detection 
大气与环境光学学报
2020, 15(1): 2
席世川 1,2,*张鑫 1,2,3杜增丰 1栾振东 1[ ... ]阎军 1
作者单位
摘要
1 中国科学院海洋研究所, 中国科学院海洋地质与环境重点实验室, 深海极端环境与生命过程研究中心, 山东 青岛 266071
2 中国科学院大学, 北京 101408
3 青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室, 山东 青岛 266061
作为一种典型的深海极端环境, 热液区域不仅分布着各种硫化物矿产, 而且孕育着特殊的生态群落, 对热液流体理化性质的研究有助于深入了解热液的运动机制。 激光拉曼光谱技术除了定性分析方面的优势外, 已经被逐步用于定量分析, 并且在原位探测中发挥了重要作用。 该研究模拟了深海热液喷口流体的高温高压环境, 探讨了水分子和硫酸根离子的拉曼光谱在热液流体温度探测中的应用价值。 通过对水峰ν1(H2O)、 硫酸根ν1(SO2-4)的拉曼频移与温度、 离子浓度的关系进行研究, 结果表明水峰ν1(H2O)和硫酸根ν1(SO2-4)的拉曼频移随温度表现出明显的变化, 水峰ν1(H2O)的拉曼频移受流体硫酸根浓度的影响明显, 因此不适用于硫酸根离子浓度变化明显的热液流体温度的测量。 相比之下, ν1(SO2-4)的拉曼频移对流体硫酸根浓度和流体压力不敏感, 为温度的反演提供了很好的依据。 建立了ν1(SO2-4)的拉曼频移与温度的线性方程: Rν1(SO2-4)=-0.03T+980.69, 其中, R2=0.998 6, 可用于对深海热液喷口流体温度的原位探测等实际应用。
激光拉曼光谱 热液流体 硫酸根 温度 Laser Raman spectroscopy Hydrothermal fluid Sulfate Temperature 
光谱学与光谱分析
2018, 38(11): 3390
作者单位
摘要
中国海洋大学光学光电子实验室, 山东 青岛266100
激光拉曼光谱技术是水下原位探测酸根离子浓度的强有力工具, 建立一套适用于海洋环境、 基于拉曼光谱技术的定量分析方法对实时了解海洋化学信息具有重要意义。 本文在实验室条件下, 以SO2-4和HCO-3系列浓度水溶液及近海海域的海水为样品, 532 nm激光作为激发光源, 模拟原位探测方式采用侵入式光学探头采集拉曼光谱。 分别采用内定标法、 多元线性回归法(MLR)、 偏最小二乘法(PLS)和基于主导因素的PLS法对光谱数据进行定量分析。 研究结果表明, 采用以1 640 cm-1水分子O—H振动谱峰为内标峰的内定标法预测待测离子浓度, 预测误差均相对较大, 定标曲线线性相关系数不高; 采用多元线性回归法, 定标曲线的线性相关系数有较大提高, 在一定程度上提高了定量分析的精度; 采用酸根拉曼峰强度、 酸根峰面积、 水峰强度、 水峰面积作主导因素结合PLS法预测配置溶液中SO2-4和HCO-3浓度的定标曲线相关系数R2分别为0.990和0.916, 对待测样30 mmol·L-1的SO2-4预测相对误差为3.262%, 对20 mmol·L-1的HCO-3预测相对误差为5.267%。 以海水中SO2-4为分析对象时, 与离子色谱法预测的28.01 mmol·L-1进行对比, 以上四种定标方法的研究结果表明, 主导因素结合PLS法优于其余三种分析方法, 其均值相对误差降低为1.128%。 因此, 采用水的拉曼信号作为主导因素结合PLS法预测水溶液中的酸根离子浓度时能有效提高定量分析的精度, 并可应用于现场和原位探测中的定标。
激光拉曼光谱技术 酸根离子 偏最小二乘法 定量分析 Laser Raman spectroscopy Acid radical ions PLS Quantitative analysis 
光谱学与光谱分析
2015, 35(9): 2548
作者单位
摘要
1 山东大学(威海)机电与信息工程学院, 山东 威海 264209
2 中国海洋大学光学光电子实验室, 山东 青岛 266100
Raman光谱分析中,由于仪器光谱分辨率的限制和复杂的目标成分,经常存在着谱峰重叠现象.容易导致谱峰参数提取乃至样品成分分析错误,更为现场光谱的自动分析处理增加了难度.重叠光谱峰的识别已成为现场光谱学处理的难点,针对这个问题,建立了一套自动识别重叠谱峰的方法:以多个高斯峰的组合作为重叠光谱解析模型,首先以对称零面积变换寻峰方法确定高斯峰的个数和初步的峰位、峰高、宽度参数,并以Levenberg-Marquardt方法对获得的初始高斯峰参数进行拟合优化,最终获得各个独立谱峰的拟合参数.对该方法进行了测试,其中以仿真数据进行的算法实验证明,对称零面积变换寻峰获得的初始参数与真实值较为接近,在此基础上进行的参数优化收敛速度快,对峰参数的提取可获得较高的准确度;以具有不同信噪比的实测Raman光谱数据进行的算法实验证明,该方法可以适用于信噪比在较大范围变化的信号,但对信噪比过低的实测信号则容易产生虚假峰和漏峰.研究证明,以对称零面积变换寻峰结合L-M拟合自动识别重叠光谱峰的方法具有一定的实用价值.
重叠峰识别 Levenberg-Marquardt拟合 对称零面积变换 Recognition of overlapped spectral peaks Levenberg-Marquardt fitting The symmetric zero-area conversion 
光谱学与光谱分析
2015, 35(8): 2339
作者单位
摘要
中国海洋大学光学光电子实验室, 山东 青岛 266100
对海水中溶存气体(甲烷、 二氧化碳等)的探测是海洋环境监测和资源探测的重要环节, 由于拉曼光谱技术可实现多组分同时探测的优势, 被视为发展海洋溶存气体探测技术的首选, 而探测灵敏度的提高则是推动该项技术实用化的关键。 针对提高拉曼光谱气体探测灵敏度这一问题, 设计并搭建了一套基于近共心腔拉曼信号增强系统, 开展了信号收集方向和激发光多次散射模式对信号强度和信噪比影响的研究。 研究发现, 信号收集方向与腔镜光轴之间的夹角越小, 所收集的信号越强、 信噪比越大, 当夹角为30度时, 信噪比是垂直方向的16倍; 近共心腔直线型多次反射模式, 与共心腔模式相比信噪比增强了近三倍。 采用最优化实验条件, 该系统与常规拉曼系统相比, 信号强度和信噪比增强效果均在70倍左右。 根据该系统对空气中CO2的相应强度(空气中CO2的浓度为0.648 mg·L-1), 以三倍于噪声强度计算检测限, 估算出该系统对CO2的探测灵敏度约为0.19 mg·L-1, 依据CO2与CH4拉曼散射截面比为1/6, 估算该系统对甲烷的检测限约为11.5 μg·L-1。
拉曼信号增强 近共心腔 探测灵敏度 甲烷 Raman signal enhancement Near concentric cavity Detection sensitivity Methane 
光谱学与光谱分析
2015, 35(3): 645
作者单位
摘要
1 中国海洋大学光学光电子实验室, 山东 青岛 266100
2 中国科学院海洋研究所, 中国科学院海洋地质与环境重点实验室, 山东 青岛 266071
为了研究孔隙水取样后的荧光时间演化特性,对柱状沉积物榨取得到的孔隙水样品进行了光谱采集。拉曼光 谱分析表明,沉积物中的SO2-4浓度随深度变大而逐渐减小,这说明沉积物孔隙水中的SO2-4参与了沉积 物中硫酸盐还原而被消耗;同一深度的孔隙水样品随着暴露时间的不同,采集到的拉曼光谱的荧光背景 也有所差别。荧光光谱分析表明,随着孔隙水暴露时间的延长,在300~350 nm处的荧光峰的强度逐渐 变大,并对荧光的形成机制进行了初步分析。
取样孔隙水 硫酸根 拉曼光谱 荧光光谱 sediment pore water sulfate radical Raman spectra fluorescence spectra 
大气与环境光学学报
2014, 9(6): 441
作者单位
摘要
1 中国海洋大学光学光电子实验室, 山东 青岛 266100
2 中国科学院海洋研究所, 中国科学院海洋地质与环境重点实验室, 山东 青岛 266071
在常温常压下, 由于甲烷(CH4)在水中的溶解度很低, 使用常规拉曼光谱技术很难获得水中溶解的低浓度甲烷的拉曼信号。 为解决上述问题, 提出了一种四氯化碳(CCl4)萃取辅助的探测新方法。 利用萃取作用, 把溶解在水中的微量甲烷富集到四氯化碳溶液中, 通过对其中溶解的CH4拉曼信号的探测以检验水中微量CH4的存在, 以此提高实验室条件下水中溶解甲烷的探测灵敏度。 在实验室条件(25 ℃, 1 atm)下, 分别对CH4的饱和水溶液(浓度约为1.14 mmol·L-1)、 CCl4萃取液以及CH4的饱和CCl4溶液进行了光谱探测分析。 结果表明, 对CH4的饱和水溶液直接探测, 未能获得CH4的拉曼信号; 通过萃取辅助, 成功地在CCl4萃取液中检测到CH4的拉曼信号, 其强度与CH4的饱和CCl4溶液的信号强度相近, 实现了在实验室条件下对水中溶存甲烷气体的探测。
四氯化碳 甲烷 拉曼光谱 萃取作用 Carbon tetrachloride(CCl4) Methane(CCl4) Raman spectroscopy Extraction 
光谱学与光谱分析
2012, 32(9): 2442

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!