作者单位
摘要
1 同济大学 物理科学与工程学院, 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
2 上海激光等离子体研究所, 上海 201800
采用三种商业3D打印机尝试加工了金属材质和树脂材质的微型靶零件。通过EOSINT M290 3D打印机以激光烧结的方式加工了钛金属靶架;通过Object 30 Pro 3D打印机以聚丙烯树脂为材料,通过喷射打印的方式加工了构型复杂的树脂靶架;通过Freeform Pico 3D打印机以蜡质树脂为材料,通过光固化成型的加工方式,获得了微腔、圆柱和平面元件,并在其表面设计了周期性图形结构。采用光学工具显微镜和共聚焦显微镜对样品的尺寸和表面形貌进行了表征。结果表明:金属靶架的线粗糙度为7.3~17.79 μm,抛光之后降低为0.87~1.66 μm;树脂靶架的面均方根粗糙度为2.88 μm;微腔和圆柱元件端面的面均方根粗糙度为2.03 μm,表面的条纹周期与设计值偏差为1.40%,平均振幅值偏差为55.50%;平面元件的面均方根粗糙度为4.87 μm,表面调制图形的周期与设计值偏差为0.80%,平均振幅偏差为3.60%。通过商业3D打印机加工靶零件,为惯性约束聚变实验中微靶零件的加工提供了新思路。
3D打印 靶零件 激光烧结 喷射打印 光固化 3D printing target components laser sintering polyjet stereo lithography 
强激光与粒子束
2016, 28(12): 124101
朱秀榕 1,2,*周斌 2杜艾 2余意 1[ ... ]张宪科 1
作者单位
摘要
1 赣南师范学院 物理与电子信息学院, 江西 赣州 341000
2 同济大学 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
采用溶胶-凝胶工艺,以氯化镧(LaCl3·7H2O)为前驱体,以甲醇和乙醇为溶剂,聚丙烯酸为分散剂,环氧丙烷为凝胶促进剂,分别合成两种性能不同的稀土La基气凝胶。采用扫描电子显微镜、傅里叶红外光谱仪、比表面积与孔径分析仪、力学性能测试仪对不同溶剂制备的两种稀土La基气凝胶的微观结构、成分、比表面积、孔径分布和力学性能进行了研究表征。结果表明,以甲醇和乙醇为溶剂制备的稀土La基气凝胶都具有纳米多孔材料的典型特征,由大量nm量级的球形和长条形颗粒胶连而成,孔洞结构丰富。以乙醇为溶剂制备的稀土La基气凝胶的网络骨架更纤细,孔洞更大,比表面积达到220 m2·g-1,密度约为160 mg·cm-3,但力学性能较差。而以甲醇为溶剂制备的稀土La基气凝胶的网络骨架更强壮,孔洞更小,比表面积达到95 m2·g-1,密度约为350 mg·cm-3,力学性能较好。样品性能上的差异可能是由甲醇的极性比乙醇的极性强引起的。
稀土  气凝胶 溶胶-凝胶 力学性能 rare earth lanthanum aerogel sol-gel mechanical property 
强激光与粒子束
2015, 27(11): 112011
杜艾 1,2,*周斌 1,2许维维 1,2朱秀榕 1,3[ ... ]沈军 1,2
作者单位
摘要
1 同济大学 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
2 同济大学 物理科学与工程学院, 上海 200092
3 赣南师范学院 物理与电子信息学院, 赣州 341000
低密度的高原子序数元素氧化物气凝胶由于前驱体形成端基双键而易于收缩和开裂。通过调控配位环境结合无机分散溶胶凝胶法, 制备了稀土氧化物气凝胶。氧化镧基气凝胶和氧化钇基气凝胶块体的成型性好, 最低密度分别为0.05 g·cm-3和0.06 g·cm-3。其成分分别为六方相的La(OH)3和六方相的Y(OH)3, 而聚丙烯酸中的羧基与稀土离子之间以桥接的方式进行配位。两种气凝胶均存在明显的多级结构, 氧化镧基和氧化钇基气凝胶的初级粒子分别为纤维状和片/球混合形貌, 而其二级粒子均为球形。两种气凝胶的比表面积分别为229.1 m2·g-1和229.6 m2·g-1。该方法制备的稀土氧化物气凝胶具有低的密度和纳米尺度的均匀性, 在背光源中有潜在的应用。
气凝胶 低密度 背光源 惯性约束聚变 稀土元素 aerogels low density backlight inertial confinement fusion rare earth elements 
强激光与粒子束
2015, 27(3): 032026
作者单位
摘要
1 赣南师范学院物理与电子信息学院, 江西 赣州 341000
2 同济大学 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
在惯性约束聚变(ICF)实验中, 点火靶丸表面(界面)的粗糙度和缺陷所产生的流体力学不稳定性是决定点火成功与否的关键因素之一, 设计和研制流体力学不稳定性分解实验用靶是解决该问题的主要技术手段。结合国内外的研究现状和神光-Ⅱ激光装置的特点, 设计并研制了一种新型柱状激波管。该靶型由三种介质组成, 分别为调制聚苯乙烯(CH)圆片、柱状碳气凝胶(CRF)和CH微套管。调制CH圆片和柱状CRF通过微加工技术装配到CH微套管内, 封装后形成柱状激波管。介绍了该靶型的设计原理和详细的制备工艺, 并对相应的靶参数进行了测量。结果表明: 柱状CRF气凝胶具有较好的成型性, 长度、直径和密度分别为1000 μm、730 μm和250 mg·cm-3; CH圆片的厚度和直径分别为15 μm和730 μm, 表面调制图形的周期和峰谷差分别为100 μm和4.3 μm; 实验得到的柱状激波管的轴向和径向最大装配误差分别为2 μm和3 μm。
惯性约束聚变 流体力学不稳定性 柱状激波管 柱状碳气凝胶 旋涂工艺 微加工 inertial confinement fusion hydrodynamic instability cylindrical shock wave tube cylindrical carbon aerogel spin-coating process micro-machining 
强激光与粒子束
2014, 26(2): 022004
作者单位
摘要
1 赣南师范学院 物理与电子信息学院, 江西 赣州 341000
2 同济大学 上海市特殊微结构材料与技术重点实验室, 上海 200092
为了研究惯性约束聚变(ICF)实验用靶丸不同密度界面的流体力学不稳定性增长,设计并制备了聚苯乙烯(CH)/碳气凝胶(CRF),CRF /硅气凝胶(SiO2)和CH/Al三种双介质调制靶。采用溶胶-凝胶工艺制备了密度分别为250和800 mg/cm3的CRF气凝胶薄片;采用激光微加工工艺分别在两种不同密度的CRF薄片和工业用纯Al箔上引入调制图形;采用旋涂工艺在Al箔和CRF薄片(250 mg/cm3)的调制表面制备一层CH薄膜,得到CH/Al和CH/CRF双介质调制靶,采用溶胶-凝胶工艺在CRF薄片(800 mg/cm3)表面制备一层低密度SiO2气凝胶,得到CRF/SiO2双介质调制靶。采用电子天平、扫描电子显微镜、工具显微镜和台阶仪对所制备的CH/CRF,CRF/SiO2和CH/Al三种双介质调制靶进行靶参数测量。结果表明: 三种双介质调制靶层与层之间结合紧密,界面清晰,调制图形为正弦,靶参数测量准确。
惯性约束聚变 双介质调制靶 流体力学不稳定性 碳气凝胶 旋涂工艺 激光微加工 inertial confinement fusion dual-layer perturbation target hydrodynamic instability carbon aerogel spin-coating process laser micro-machining 
强激光与粒子束
2014, 26(1): 012004
作者单位
摘要
同济大学 上海市特殊微结构材料与技术重点实验室, 上海 200092
介绍了碳气凝胶/聚苯乙烯(CRF/CH)双介质柱状靶的制备方法。使用溶胶-凝胶法和微模具原位成型法制备了直径为820 μm的间苯二酚-甲醛(RF)气凝胶微柱,在氮气保护下进行高温碳化后得到直径为730 μm、密度为250 mg·cm-3的CRF微柱;采用浸渍提拉法在CRF微柱柱面镀制一层厚度为26 μm 的CH薄膜, 形成CRF/CH双介质结构;采用机械微切割技术制备了长度为1 mm, 内径为730 μm,壁厚为26 μm的CRF/CH双介质柱状靶。实验研究了RF,CRF气凝胶微柱的制备工艺、微观形貌及CRF微柱轴向和径向的密度均匀性,探讨了影响CH薄膜厚度的主要因素,并对CH薄膜的表面形貌和两种材料之间的界面进行了表征。
惯性约束聚变 双介质柱状靶 流体力学不稳定性 碳气凝胶 提拉法 inertial confinement fusion dual-media cylindrical target hydrodynamics instability carbon aerogel dip-coating 
强激光与粒子束
2011, 23(7): 1843
作者单位
摘要
同济大学 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
以间苯二酚-甲醛为原料,结合自制活动式微模具成型工艺制备不同厚度和密度的碳气凝胶薄片,采用密度为10 mg·cm-3的SiO2溶胶为“粘合剂”,获得单元薄片厚度在100~580 μm,密度在50~400 mg·cm-3范围内变化的5层密度渐变碳气凝胶靶型。重点研究了该特殊靶型内部C/SiO2气凝胶层间界面情况。采用场发射扫描电镜(FESEM),X射线相衬成像仪等对靶型整体结构及碳气凝胶单元薄片表面和内部微观结构进行了表征。结果表明:胶粘层SiO2气凝胶厚度约为15 μm,厚度一致,远小于碳气凝胶层厚度且与碳气凝胶薄片的胶粘程度较好,界面平整,靶结构均匀。(Shanghai Key Laboratory of Special Microstructure Materials and Technology, Tongji University, Shanghai 200092, China)Abstract:Key words:
冲击波 密度渐变 多层靶 超低密度SiO2溶胶 粘合剂 shock wave graded density multilayer target ultralow density silica sol bonding agent 
强激光与粒子束
2011, 23(3): 657
作者单位
摘要
同济大学 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
研究了不同密度和厚度的碳气凝胶薄片的制备及其表面致密层去除工艺。在以间苯二酚、甲醛为原料制备有机及碳气凝胶块体材料的基础上, 结合自制活动式微模具成型工艺, 制备了厚度在80~350 μm, 密度在50~600 mg·cm-3范围内变化的碳气凝胶薄片。采用场发射扫描电镜、X射线相衬成像和表面轮廓仪-台阶仪等手段对其表面和内部微观结构进行了表征。测试结果表明, 碳气凝胶薄片与块体的内部结构相同, 但薄片表面存在一层和内部结构截然不同的致密层。采用不同粗糙程度的材料对薄片进行了表面微处理, 成功去除该致密“皮”层。
碳气凝胶 薄片 致密层 表面处理 carbon aerogel sheets dense layer superficial treatment第22卷第12期强激光与粒子束V No.12 
强激光与粒子束
2010, 22(12): 2875

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!