孙也 1,2李梦歆 1蒋炘鑫 1李海丹 1[ ... ]朱天乐 1,2,*
作者单位
摘要
1 北京航空航天大学 空间与环境学院,北京 102206
2 北京航空航天大学 北京市环境工程教学示范中心,北京 102206
为提升本科生实验教学水平,基于化学前沿成果服务于大气污染治理的理念,设计了类水滑石衍生物催化剂催化臭氧氧化VOCs中具有代表性的苯系污染物甲苯的综合实验。学生自主设计实验方案,采用不同制备方法结合高温煅烧技术制备类水滑石衍生物催化剂,并对其进行X射线衍射XRD、扫描电子显微镜SEM、比表面积检测方法BET、H2程序升温还原H2-TPR、NH3程序升温脱附NH3-TPD、电子顺磁共振EPR等结构和理化性质表征。实验帮助学生理解材料化学在环保领域的实际应用,教会学生使用仪器分析手段解密构效关系,培养学生“宏微结合”的创新思维,也为科研课堂的开展提供了新思路。
综合实验设计 催化臭氧氧化 甲苯 类水滑石 comprehensive experimental design catalyzes ozone oxidation toluene hydrotalcite 
实验科学与技术
2024, 22(1): 89
作者单位
摘要
浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027
提出了一种无群速度延迟的空间载频谱域光学相干层析成像(OCT)系统消镜像方法。用一块光栅取代传统谱域OCT系统中参考臂内的平面反射镜,在相邻的A-scan之间通过相位调制引入了移项量,同时没有引入任何附加光程差。对得到的干涉光谱信号进行横向傅里叶变换,然后进行滤波,对滤波所得信号进行逆傅里叶变换,最后对得到的信号进行轴向傅里叶变换,就能获得样品消镜像后的OCT图像。介绍了谱域OCT中无群速度延迟的空间载频消镜像方法的实验原理与实验系统,实验研究了平面镜样品在不同调制频率下的成像效果,并给出了平面镜和手指样品消镜像后的OCT图像。
成像系统 光学相干层析 消镜像 空间载频 群延迟 
中国激光
2013, 40(8): 0804001
作者单位
摘要
1 浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027
2 浙江长征职业技术学院, 浙江 杭州 310023
发展了一种基于光学相干层析(OCT)散斑的流速测量方法。与传统激光散斑信号相似,样品中某一点处OCT信号随时间的波动与该处散射颗粒的平均速度有一定的依赖关系。通过对OCT信号的滤波和解调,得到OCT散斑波动信号,再对该信号进行傅里叶变换,得到散斑信号的频谱分布,然后依据频谱分布中高低频分量比值(HLR)与流速间的定量关系,就能确定样品中的流速分布。基于OCT散斑强度信号而非相位信息的流速测量方法,实验研究了HLR与流速间的关系,并给出了毛细玻璃管模型的流速分布图像。
测量 光学相干层析 散斑信号 流速测量 
中国激光
2012, 39(5): 0504002
作者单位
摘要
浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027
报道了一种傅里叶域锁模(FDML)的扫频激光光源。扫频激光光源由激光谐振腔和光功率增强单元组成,激光谐振腔主要包含增益介质、调谐滤波器和延迟线。增益介质采用了两个串联的半导体光放大器,调谐滤波器则采用了基于利特罗结构的光栅旋转多面镜。研制的FDML扫频激光光源的中心波长为1290 nm,扫频速度为14.8 kHz,扫频范围为108 nm,半峰全宽为61 nm,输出平均功率达3 mW。扫频光源是光学频域成像系统的关键部件,该扫频光源的研制将有力推动光学频域实时成像技术的发展。
激光器 光学相干层析技术 光学频域成像 扫频光源 傅里叶域锁模 调谐滤波器 
光学学报
2011, 31(6): 0614002
作者单位
摘要
1 浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027
2 浙江长征职业技术学院, 浙江 杭州 310023
在屈光介质中,由于光线的折射以及光程与实际物理距离的错配,使得光学相干层析(OCT)成像存在重构误差。将几何光学中光线追迹的方法应用于光纤型谱域光学相干层析成像系统所成图像的重构误差矫正,在理论上推导了屈光介质所成层析图像与其真实物理结构的映射关系。实验中,将提出的方法应用于玻璃毛细管和人眼眼前节图像的重构误差矫正,在矫正后的图像中玻璃毛细管的剖面结构得到了准确的还原,所测人眼的眼角膜厚度、前房深度和宽度、眼角膜前后表面以及晶状体前表面的曲率半径等各种参数都符合模型眼给出的参考值。该方法能够使光学相干层析成像系统应用于具有任意多层折射界面的屈光介质,包括由透镜组组成的复杂光学系统等的成像。
生物光学 光学相干层析 成像误差 几何光学 屈光介质 
中国激光
2011, 38(5): 0504001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!