李文杰 1,2王淑荣 4,5,**颜昌翔 1,3,*丁宁 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 中国科学院大学材料与光电研究中心,北京 100049
4 佛山科学技术学院物理与光电工程学院,广东 佛山 528051
5 粤港澳智能微纳光电技术联合实验室,广东 佛山 528051
针对GF-5卫星搭载的多角度偏振探测仪(DPC)平台上气溶胶细粒子反演算法中半经验模型不适用于城市地表偏振反射率估算的问题。基于DPC的经验正交函数方法,开展了气溶胶细粒子光学厚度反演研究。基于米散射计算气溶胶辐射贡献,采用经验正交函数方法计算地表贡献,利用多角度偏振数据以及矢量辐射传输方程,反演气溶胶细粒子光学厚度。本研究的反演结果与中分辨率成像光谱仪的气溶胶细粒子光学厚度产品分布趋势具有一致性,然后与AERONET北京、香河、香港站点的测量结果进行定量对比,相关系数为0.97、0.96、0.9,平均绝对误差为0.08、0.07、0.12,均方根误差为0.12、0.11、0.17,验证了算法的高精度与合理性。最后呈现2019年中国部分地区的气溶胶细粒子光学厚度月平均数据,并分析山东地区气溶胶细粒子光学厚度变化情况,发现6月是全年最高的时期,均值为0.7。上述结果验证了本文算法的可靠性,可为DPC有效监测气溶胶的时空分布提供技术支持
大气光学 多角度偏振探测仪 反演 地表偏振反射率 气溶胶细粒子 光学厚度 
激光与光电子学进展
2023, 60(9): 0901003
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
2 上海卫星工程研究所载荷与地面应用技术研究室, 上海 200240
为了提高多通道光栅扫描光谱仪的波长定标精度,在介绍传统单通道光栅光谱仪线性波长扫描原理的基础上,分析并推导了多通道光谱仪中,共用光栅轴装调误差导致的光谱仪输出波长与丝杠移动距离的理论非线性公式。利用该非线性公式作为波长定标公式对风云三号太阳辐照度光谱仪原理样机进行波长定标,结果表明:传统线性公式的定标精度为0.08 nm,利用波长非线性公式可将波长定标精度提高到0.03 nm,满足仪器的波长定标精度,验证了多通道光栅扫描光谱仪波长非线性关系的准确性。
光谱学 光栅光谱仪 波长定标 多通道光谱仪 波长非线性 正弦结构 
中国激光
2019, 46(9): 0911004
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春130033
2 上海卫星工程研究所载荷与地面应用技术研究室, 上海 200240
为了在有限的太阳观测窗口内获得高质量的太阳光谱数据,需保证太阳进入观测窗口时仪器已完成自身预热。为保证仪器预热时间的一致性,需在轨实时预报预热开始时刻,需对每轨太阳开始进入仪器观测窗口的时间进行短时间高精度预报。详细介绍了一种由卫星平台当前广播时间和轨道瞬根推导预报时刻太阳角度的方法。利用该方法预报某一太阳同步轨道卫星本体坐标系下的太阳角度,并将预报结果与STK仿真结果进行比对。该预报方法在预热时间内的最大角度误差为0.5°,导致预热时间最大偏差为20 s,满足1 min的指标要求。分析了预报方法中的主要误差来源,为后续卫星载荷的在轨太阳角度短期预报提供了借鉴与参考。
测量 太阳角度预报 太阳同步轨道 轨道瞬根 太阳辐照度光谱仪 
光学学报
2019, 39(7): 0712007
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
为提高大气臭氧观测中的临边大气反演精度, 克服臭氧探测仪在轨热变形和卫星姿态误差对临边指向精度的影响, 建立了在轨视轴临边指向的精度补偿方法。通过分析低星等恒星的能量和观测时机, 设计合适的恒星观测窗口和积分时间; 采用平板玻璃获取星点像的弥散斑, 用阈值距心法计算恒星像在像面上的位置; 然后根据卫星轨道和探测仪的几何结构, 设计临边指向精度的在轨补偿方法并分析了补偿后的临边指向精度。地面对星观测实验的结果表明: 采用恒星定位补偿法, 可使星点像的定位误差小于1.83″, 当前视轴的指向误差控制在±3.08″以内; 在编码器的位置重复精度为±2.47″的条件下, 使临边观测光轴位置上的扫描镜定位误差控制在±3.95″以内, 臭氧探测仪临边指向精度达到±7.9″以上,完全满足反演所需的指向精度优于±12.4″的要求。
大气观测 痕量气体 指向误差 在轨补偿 恒星定位 atmospheric observation trace gas pointing error on-orbit correction star location 
光学 精密工程
2019, 27(3): 569
作者单位
摘要
中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
基于目前常用的光谱杂散光测试与修正方法,详细介绍了光谱杂散光矩阵修正法的核心内容——仪器的光谱杂散光矩阵的标定。在实验室搭建了杂散光矩阵测量装置,标定了前向临边成像光谱仪初样机的杂散光矩阵,在外场实验中验证了基于仪器杂散光矩阵的杂散光修正方法的精度。
大气光学 杂散光修正 杂散光矩阵 光谱杂散光 成像光谱仪 遥感定量化 
光学学报
2018, 38(11): 1101001
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为提高仪器整机性能及遥感数据反演质量,分析了仪器光学系统膜系对偏振的影响,利用氙灯、准直系统、布儒斯特起偏器和紫外光谱仪构建了一套偏振响应测试系统,测量了仪器在200~320 nm紫外波段范围内的P光与S光的偏振响应。测试结果表明,仪器在P偏振光与S偏振光照射下呈现出不同的偏振响应,偏振态由S变化到P,紫外光谱仪响应峰值波长位置由290 nm变化到275 nm,双片漫透射板相比单片漫透射板,紫外光谱仪能量减少40%~75%;增加单片与双片漫透射板后,紫外光谱仪的偏振响应值均在265 nm波长处达到最大,其中双片漫透射板使紫外光谱仪偏振响应更接近单位值1,缩小了不同偏振态光的偏振响应差异,更适用于同步辐射光源定标需求。
测量 空间紫外遥感 偏振响应 漫透射板 同步辐射 
光学学报
2018, 38(1): 0112006
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了考察光电倍增管的性能,以使其满足空间遥感仪器在轨应用需求,利用氘灯、真空紫外单色仪、光电倍增管等构建了一套基于标准真空光电管的量子效率定标系统,依据光电倍增管的阴极量子效率测量原理,将光电倍增管改造成无电子束倍增的光电管,实现了由标准真空光电管到光电管R2078的标准传递; 并在此基础上,在国内首次实现了150~300 nm紫外-真空紫外波段光电管量子效率的直接测量。测量结果表明:由于光电管R2078的窗口材料为融石英,其在155 nm处的透过率最小,因此在155 nm处获取的量子效率最小,在230 nm波长处量子效率最大。最后对测量结果进行不确定度分析与估计,得到总的合成不确定度为3.4%。
探测器 紫外-真空紫外 定标 量子效率 光电倍增管 不确定度 
中国激光
2018, 45(8): 0804005
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
基于长光辰芯公司的背照式CMOS探测器GSENSE400和Xilinx公司的Virtex-4 FPGA,设计了紫外遥感仪器高速CMOS成像电子学系统,包括探测器驱动电路、低噪声偏置电源电路及时序控制单元等。在接收高速图像数据时,针对传统的通道训练方法只考虑了线路上的随机性抖动而没有考虑固定性抖动的问题,提出了一种新的训练策略,增加了对采样数据正确性的判断,提高了对数据眼图有效窗口识别的准确度。为了克服在随后的图像数据传输过程中由于温度变化和电压漂移引起的采样点的再次偏移,提出了一种实时窗口监视算法,在不影响数据正常传输的情况下,利用监视通道实时监测采样点与有效窗口左右边界的距离,根据需要及时重新调整线路延时,使采样点始终位于比有效窗口更小的一个安全采样窗口内,由此保证了图像数据长时间接收的高可靠性。设计的高速CMOS成像电子学系统工作稳定,输出图像数据率最高可达2.4 Gb/s,读出噪声为1.72e-,动态范围94 dB,满足载荷的任务需求。
紫外遥感仪器 CMOS成像电子学 驱动电路 数据眼图 实时窗口监视 ultraviolet remote sensing instrument CMOS spectral imaging system driver circuit data eye real-time window monitor 
光学 精密工程
2018, 26(2): 471
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
基于地基天文观测系统光轴平行性的校验需求, 建立了一套高精度多光轴平行性检测系统。针对具有成像光谱仪的天文观测系统, 将恒星作为点光源, 利用天文跟踪系统完成对恒星星象及相应光谱数据的同步采集。在光谱维视场中,成像光谱仪不易准确地确定恒星的位置, 该检测方案利用赤道仪控制系统和成像光谱仪狭缝视场的特点, 对恒星目标进行一维扫描, 将成像光谱仪接收到的恒星能量随着扫描位置进行拟合来确定光谱维视场中心, 通过高斯拟合法来计算光学仪器之间光轴的平行性偏差。试验结果表明: 测量结果不确定度为1.52", 该检测系统结构简单, 满足成像光谱仪和其它成像仪器野外高精度快速检测光轴一致性的要求。
测量 光轴一致性 恒星 成像光谱仪 赤道仪 measurement optical axis parallelism star imaging spectrometer equatorial telescope 
红外与激光工程
2017, 46(5): 0517003
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
为了对空间遥感光谱仪器进行光学性能检测, 设计并实现了空间遥感光谱仪器光学性能地面检测系统。该系统包含硬件和控制软件两部分; 硬件分为光源、机械运动子系统、信号采集子系统和计算机, 控制软件在Windows环境下使用Labview实现。在电机控制中使用细分驱动, 采用包含误差项计算步数的方法减小积累误差, 通过指定波长扫描或连续波长扫描进行扫描机构控制, 并实时显示光谱曲线。自动计算信噪比、使用广义最小二乘法对感兴趣的区域进行高斯拟合, 并自动读取带宽。实验表明, 本系统可以实现空间遥感光谱仪器的全波段、自动化光学性能检测, 波长精度优于±0.05 nm, 重复性优于0.01 nm, 可在1 s内完成信噪比计算, 光谱带宽小于1 nm, 满足指标要求, 提高工作效率, 为载荷研制奠定了基础。
地面检测 光学性能 空间遥感 全波段 自动化 ground testing optical performance space remote sensing full wave band automation 
液晶与显示
2017, 32(3): 206

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!