作者单位
摘要
燕山大学电气工程学院, 河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
气溶胶光学厚度(AOD)是气溶胶浓度和大气浊度的重要表征参数。 通过遥感手段实现大气气溶胶光学厚度的反演是大气监测与治理过程中的重要方式, 其中遥感反演AOD的重点和难点是如何选择适合卫星传感器成像特点的方法和符合研究区域的气溶胶类型。 针对传统暗目标法无法直接应用于高分四号(GF-4)卫星多光谱遥感数据的问题, 通过研究得出了GF-4卫星多光谱数据中红、 蓝波段等效地表反射率的分布和两者之间的线性关系, 结合AOD反演原理改进暗目标法使其适用于GF-4卫星多光谱遥感数据; 分析6S辐射传输模型输入参数中气溶胶类型对AOD反演精度的影响, 结果表明气溶胶类型是影响AOD高精度反演的关键要素之一; 利用粒子群(PSO)聚类算法对京津冀地区气溶胶特性实测样本进行聚类分析, 通过分析各个气溶胶类型聚类结果的占比和半衰期变化情况, 最终确定聚类得到的C1、 C4型和6S模型内置的大陆型气溶胶类型进行京津冀地区的AOD反演。 为了验证不同气溶胶类型AOD反演结果的精度, 将反演结果与MODIS气溶胶产品和气溶胶自动观测网(AERONET)地基站点数据进行对比验证, 通过相关系数、 绝对误差等评价标准对不同气溶胶类型的适用性和特点进行评价。 实验结果表明, 以细粒子为主导的C4型气溶胶更满足京津冀地区夏秋两季的气溶胶特点, 与AERONET地基数据的一致性较好, 进一步证明了PSO聚类算法能够有效减小气溶胶类型的差异对AOD反演精度的影响。
气溶胶 GF-4卫星多光谱数据 京津冀地区 PSO聚类算法 Aerosol GF-4 satellite multispectral data Beijing-Tianjin-Hebei region PSO clustering algorithm 
光谱学与光谱分析
2020, 40(11): 3321
作者单位
摘要
燕山大学电气工程学院河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
山梨酸钾是日常生活中一种典型的食品防腐剂。 过量食用防腐剂山梨酸钾, 会严重危害人身体健康。 以橙汁作为背景溶液, 配制山梨酸钾含量在0.007 0~0.100 0 g·L-1之间的山梨酸钾橙汁溶液样本共22组。 应用FS920荧光光谱仪对防腐剂山梨酸钾的水溶液以及橙汁溶液的荧光特性进行了研究。 由于山梨酸钾和橙汁的荧光特性相互干扰, 山梨酸钾橙汁溶液的浓度与荧光强度不再满足线性关系, 所以物质浓度的预测比较复杂。 通过构建改进鸡群算法优化支持向量机(ICSO-SVM)的模型对荧光光谱数据进行处理。 模型选取18个样本作为训练集, 4个样本作为预测集。 提取各样本在最佳激发波长λex=375 nm下, 发射波长在450~520 nm范围内的荧光强度值作为输入, 以山梨酸钾橙汁溶液的浓度值作为输出。 首先对改进鸡群算法(ICSO)的各个参数进行初始化, 然后经过训练输出支持向量机(SVM)的惩罚因子C和核参数g的最佳值, 再将得到的最佳值输入SVM模型, 得到4组预测浓度值分别为0.011 5, 0.026 0, 0.077 0和0.092 0 g·L-1。 ICSO-SVM模型的均方误差为1.02×10-5 g·L-1, 平均回收率为101.88%。 相同条件下与鸡群算法优化支持向量机(CSO-SVM)、 遗传算法优化支持向量机(GA-SVM)和粒子群算法优化支持向量机(PSO-SVM)进行对比。 结果表明ICSO-SVM模型的预测精度高于CSO-SVM, GA-SVM和PSO-SVM, 而且改进鸡群算法在训练过程中更容易找到全局最优值, 迭代速度更快。 该研究为物质浓度预测提供了一种新方法。
荧光光谱 改进鸡群算法 支持向量机 山梨酸钾 Fluorescence spectra Improved chicken swarm algorithm Support vector machine Potassium sorbate 
光谱学与光谱分析
2020, 40(5): 1614
作者单位
摘要
燕山大学河北省测试计量技术与仪器重点实验室, 河北 秦皇岛 066004
多环芳烃(PAHs)作为一种芳香族化合物, 普遍存在于人们的生产生活中, 它具有强烈的致癌性, 威胁着人们的生命和健康。 所以, 对多环芳烃实施简洁、 高效、 精确的检测方法很有必要。 根据常见的多环芳烃类型, 选取多环芳烃萘(NAP)、 芴(FLU)、 苊(ANA)的固体粉末状物质作为实验样本。 取NAP, FLU和ANA粉末各1 g溶于少量的甲醇(光谱级)溶液, 然后转移到100 mL的去离子水溶液中, 配置PAHs标准溶液。 采用FS920荧光光谱仪, 实验中为避免荧光光谱仪本身产生的瑞利散射影响, 设置起始的发射波长滞后激发波长10 nm。 以标准溶液为基准, 获取ANA, NAP和FLU单质的水溶液的荧光光谱图。 在标准溶液的基础上, 配置0.1 mg·mL-1的单质水溶液, 然后将ANA与NAP, FLU分别取不同的体积相互混合形成两种混合溶液, 各自形成16种不同浓度比例的混合溶液, 再取不同体积的三种溶液相互混合, 摇匀震荡, 最后一共形成48种不同体积比例的混合溶液。 最后将实验数据输入Matlab中得到苊萘、 苊芴、 苊芴萘混合溶液的荧光光谱, 发现混合溶液的激发波长在260~320 nm、 发射波长300~380 nm波长范围内, 最佳发射波长的位置相似, 荧光峰对应的激发波长有大部分重叠。 针对荧光光谱不能直接辨别混合物的种类的不足, 将基于遗传算法(GA)优化的支持向量机(SVM)应用于多环芳烃混合物种类的检测中, 将数据随机打乱, 并且将遗传算法的终止进化代数设为200、 训练数据和预测数据分别为36个和12个, 得到训练结果的准确率为95.42%。 将实验结果对比分析普通支持向量机和BP神经网络, 结果表明, 基于遗传算法优化的支持向量机分类误差较小, 能比较准确的分辨混合物的种类。
三维荧光光谱 遗传算法 支持向量机 多环芳烃 Three-dimensional fluorescence spectroscopy Genetic algorithnm Support vector machine Polycyclic aromatic hydrocarbons (PAHs) 
光谱学与光谱分析
2020, 40(4): 1149
作者单位
摘要
燕山大学河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
化妆品中的酚酸类物质, 有的作为有效成分而添加, 如: 具有修复皮肤功效的咖啡酸、 能够抗炎抗过敏的没食子酸等; 有的作为防腐剂而添加, 如: 对羟基苯甲酸、 山梨酸等; 有的则属于禁用物质, 被不良商家违法添加, 如: 对苯二酚、 间苯二酚等。 为监控化妆品质量, 对化妆品中酚酸类物质的检测显得尤为重要。 许多研究人员也为此做了相关工作, 以色谱法为主的先分离后分析的方法取得了一定的成功, 但是费时、 费料、 操作复杂等缺点也十分明显; 三维荧光光谱技术具有较高的灵敏度, 但是荧光干扰和光谱重叠对检测有较大的影响, 针对复杂的化妆品样本往往无法得到理想的效果。 为实现化妆品中酚酸类物质的同时定性定量检测, 文章将三维荧光光谱技术与化学计量学的四维校正(也称三阶校正)相结合, 在保证高灵敏度的情况下, 克服未知干扰和数据共线性的影响。 首先, 在咖啡酸(caffeic acid, CA)、 对羟基苯甲酸(p-hydroxybenzoic acid, p-HA)、 对苯二酚(hydroquinone, HQ)的线性范围内选取合适的浓度, 分别在7.00, 7.30, 7.50和7.80四种pH值下配制校正样、 验证样和化妆品样, 这样就得到了激发-发射-pH-样本(EX-EM-pH-Sample)四维数据阵。 其次, 为验证pH值对荧光强度的影响, 选取320 nm作为激发波长, 得到咖啡酸在四种pH值下的发射波长, 发现咖啡酸的荧光强度随着pH值的增加而升高, 表明引入pH值作为第四维的合理性。 最后, 选择合适的组分数将四维数据阵用交替惩罚四线性分解算法(alternating penalty quadrilinear decomposition, APQLD)进行分解和预测, 将分解的光谱与实际光谱比较, 将预测的浓度与实际浓度比较。 实验结果显示无论是验证样还是化妆品样, 分解光谱均能与实际光谱相吻合, 验证样的平均回收率(AR)为100.4%~103.5%, 预测均方根误差(RMSEP)低于0.06; 化妆品样平均回收率(AR)为100.0%~102.2%, 预测均方根误差(RMSEP)低于0.08。 与色谱法研究相比回收率高出大约4%, 且操作简便省时省力, 灵敏度高; 与二阶校正方法相比, 都可以实现在未知干扰下对复杂化妆水体系中多个组分的同时分析, 以“数学分离”代替“物理化学分离”, 快速、 高效、 经济、 环保; 且三阶校正可以克服一定的数据共线性问题, 在一定程度上提高了灵敏度。
酚酸类物质 三维荧光光谱 交替惩罚四线性分解算法 Phenolic acids Three-dimensional fluorescence spectroscopy Alternating penalty quadrilinear decomposition 
光谱学与光谱分析
2020, 40(2): 506
作者单位
摘要
1 燕山大学河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
2 天津做票君机器人科技有限公司, 天津 300450
没食子酸(GAa), 学名为3,4,5-三羟基苯甲酸(分子式为C7H6O5), 通常以水合物的形式存在, 作为一种重要的有机原料, 广泛的存在于植物中。 有研究证明GAa具有抗氧化、 抗炎、 抗肿瘤、 抗病毒、 抗突变等多种作用。 因此GAa常作为抗氧化剂添加于化妆品中。 对羟基苯甲酸(p-HA), 分子式为C7H6O3, 其中的R基为甲基、 乙基、 丙基、 丁基或庚烷基时分别称为对羟基苯甲酸乙酯、 对羟基苯甲酸丙酯、 对羟基苯甲酸丁酯和对羟基苯甲酸庚酯。 p-HA酯类的抗菌性强、 毒性低、 抑菌作用不受pH影响, 因此常添加于化妆品及药物中用作防腐剂。 间苯二酚(RE)又称1, 3苯二酚或间二苯酚(分子式为C6H6O2)。 RE具有杀菌作用, 可作为防腐剂添加于化妆品中。 以没食子酸(GAa)、 对羟基苯甲酸(p-HA)和间苯二酚(RE)三种化妆品常用添加剂为目标分析物, 通过引入第四维—溶剂, 构建四维荧光光谱数据, 使用甲醇(光谱级)、 乙醇(光谱级)、 超纯水分别获得三组实验样本, 三组样本的配置方法与加入药品量相同。 使用FS920稳态荧光光谱仪对样本进行检测, 设置激发波长为210~330 nm, 间隔4 nm记录一个数据; 发射波长为280~480 nm, 间隔2 nm记录一个数据。 初始发射波长总是滞后激发波长10 nm, 由此可消除一级瑞利散射的干扰。 随后使用空白扣除法对初始荧光数据进行预处理, 去除了溶剂的拉曼散射。 最后, 采用核一致诊断法确定待测样本的组分数为3, 使用交替加权残差约束四线性分解(alternating weighted residual constrained quadratic decomposition, AWRCQLD)算法对预处理后的三维荧光光谱数据进行分解。 结果表明, AWRCQLD算法分解得到GAa、 p-HA和RE的激发、 发射光谱图与目标光谱几乎重叠, 能实现光谱重叠严重的GAa、 p-HA和RE的快速定性和定量分析。
三维荧光光谱 交替加权残差约束四线性分解 没食子酸 对羟基苯甲酸 间苯二酚 Three-dimensional fluorescence spectroscopy Alternating weighted residual constrained quadrati Gallic acid p-hydroxybenzoic acid Resorcinol 
光谱学与光谱分析
2020, 40(2): 501
作者单位
摘要
燕山大学河北省测试计量技术与仪器重点实验室, 河北 秦皇岛 066004
三维荧光光谱法在研究多环芳烃(PAHs)类物质的荧光信息时起到了重要作用。 多环芳烃类物质具有致癌性, 难降解性, 多由尾气排放, 垃圾焚烧产生, 危害着人类健康及环境, 因此人们不断探索对多环芳烃检测的方法。 实验选取多环芳烃中的苊和萘作为检测物质, 利用FLS920荧光光谱仪, 为避免荧光光谱仪本身产生的瑞利散射影响, 设置起始的发射波长滞后激发波长40 nm, 设置扫描的激发波长(λex)范围为: 200~370 nm, 发射波长(λem)范围为: 240~390 nm, 对多环芳烃进行荧光扫描获取荧光数据, 采用三维荧光光谱技术结合平行因子算法对混合溶液中的苊和萘进行定性定量分析。 实验选用的苊和萘均购于阿拉丁试剂官网, 配制浓度为10 mg·L-1的一级储备液, 再将一级储备液稀释, 得到苊和萘浓度为0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4和4.5 mg·L-1的二级储备液, 并将苊和萘进行混合。 在进行光谱分析前需要对苊和萘的光谱进行预处理, 采用空白扣除法扣除拉曼散射的影响, 并采用集合经验模态分解(EEMD)消除干扰噪声。 实验测得苊存在两个波峰, 位于λex=298 nm, λem=324/338 nm处, 萘存在一个波峰, 位于λex=280 nm, λem=322 nm处。 选用的PARAFAC算法对组分数的的选择很敏感, 因此采用核一致诊断法预估组分数, 估计值2和3的核一致值都在60%以上, 分别对混合样品进行了2因子和3因子的PARAFAC分解, 将分解后得到的激发发射光谱数据和各组分浓度数据进行归一化处理, 并绘制光谱图, 与归一化处理后的真实的激发发射光谱图和各组分浓度图进行对比。 同时将PARAFAC得到的混合样本的预测浓度, 通过计算回收率(R)和均方根误差(RMSEP)来判定定量分析的准确度。 选择2因子时, 各混合样品中苊和萘拟合度为95.7%和96.7%, 平均回收率分别为101.8%和98.9%, 均方根误差分别为0.018 7和0.031 6; 选择3因子时, 各混合样品中苊和萘拟合度为95.3%和95.8%, 平均回收率分别为97%和102.5%, 均方根误差分别为0.033和0.116, 由三项指标可得选用2因子进行定性定量分析的效果明显好于选用3因子。 分析实验结果表明, 基于三维荧光光谱法和PARAFAC算法对混合样品进行定性定量分析, 能够有效的判定混合样品的类别, 同时能够成功的预测出混合样品的浓度。
三维荧光光谱 多环芳烃 集合经验模态 平行因子算法 Three-dimensional fluorescence spectroscopy Pdycyclic aromatic hydrocarbons EEMD PARAAFAC 
光谱学与光谱分析
2020, 40(2): 494
作者单位
摘要
1 燕山大学河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
2 河北环境工程学院, 河北 秦皇岛 066102
水是生命之源, 人们日常生产生活离不开水。 近年来水体污染日趋严重, 已经危害到人类的健康。 酚类化合物(Phenolic Compound)是一种广泛存在且很难降解的有机污染物, 指的是芳香烃中苯环上的氢原子被羟基取代所生成的含羟基衍生物, 毒性很强, 对动植物及人类的生命活动有严重危害。 实验研究对象选取间苯二酚(resorcinol, RES)和对苯二酚(hydroquinone, HYD)来配制待测样本, 并且在其中3组预测样本中加入苯酚(phenol, PHE)作为干扰物, 待测样本和空白溶剂分别用FS920稳态荧光光谱仪(edinburgh instruments, EI)扫描得到荧光光谱数据。 对所得到的数据通过扣除空白溶剂法来消除拉曼散射的影响, 得到的数据在消除干扰的同时最大程度保留下来原光谱所包含的重要信息。 校正后光谱变得更加圆滑, 荧光强度显著增强, 因此, 校正处理后的光谱信息更为准确。 利用三维荧光光谱(EEM)结合平行因子分析(PARAFAC)和交替惩罚三线性分解(APTLD)两种二阶校正方法, 分别完成在不含干扰物和含有干扰物、 同时激发-发射光谱严重重叠时对间苯二酚、 对苯二酚的快速、 直接、 准确测量, 并给出定性、 定量分析结果。 PARAFAC算法对混合体系的组分数(即化学秩)较敏感, 组分数选取过大易使其陷入计算“沼泽”, 迭代次数增多, 计算耗时变长。 故本文利用核一致诊断法(CORCONDIA)预估计出准确的组分数, 保证PARAFAC算法更加快速准确。 从定性分析结果知, 当不含有干扰物时, PARAFAC能够准确分辨出间苯二酚和对苯二酚, 二者荧光峰位置极为接近, 很难用传统方法分辨, 体现出将三维荧光光谱技术与化学计量学二阶校正方法相结合所具有的“二阶优势”; 定量分析结果给出, 在有干扰物共存时, 分别应用两种二阶校正法解析光谱数据结果显示: PARAFAC的浓度预测回收率为93.4%±0.5%~97.1%±1.0%, 预测均方根误差小于0.190 mg·L-1; APTLD的浓度预测回收率为95.9%±1.6%~97.2%±0.8%, 预测均方根误差小于0.116 mg·L-1, 通过比较两种方法性能得: PARAFAC对待测物组分数敏感, 对待分解的光谱数据严格线性要求高; 而APTLD对混合物组分数不敏感, 计算速度快, 抗噪声能力较强, 结果稳定, 具有较明显的优势。
交替惩罚三线性分解 三维荧光光谱 二阶优势 精密度 酚类 APTLD Three-dimensional fluorescence spectroscopy Second-order advantage Precision Phenol 
光谱学与光谱分析
2020, 40(1): 119
作者单位
摘要
1 燕山大学河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
2 河北环境工程学院, 河北 秦皇岛 066102
酚类化合物在冶金、 炼油、 机械制造、 医药、 农药和油漆等工业有广泛的应用, 但酚类化合物具有毒性, 若不加以处理将会对环境造成污染。 水是生命之源, 水环境中酚类化合物检测显得尤为重要。 三维荧光光谱分析法具有灵敏度高、 检测速度快、 预处理方便和痕量检测等特点, 二阶校正分析法可以在混合物中分辨出感兴趣的成分。 采用三维荧光光谱结合二阶校正方法对水环境中酚类化合物进行测定。 实验选用间甲酚和间苯二酚作为被测物质, 配置添加干扰物和不添加干扰物两类样本, 通过FLS920稳态荧光光谱仪测得8个校正样本和8个预测样本的三维荧光光谱数据, 并对其进行数据预处理, 扣除原始光谱中所包含的散射干扰, 并对原始光谱数据进行激发/发射校正, 然后采用db3小波函数生成的小波包对光谱数据进行数据压缩, 去除光谱数据中的冗余信息, 其中压缩分数达到91.67%, 恢复分数达到96.62%。 然后分别采用平行因子分析(PARAFAC)和自加权交替三线性分解(SWATLD)两种二阶校正方法对预处理后的光谱数据进行定性和定量分析。 根据核一致分析法结合残差判别分析法的分析结果, 设定未添加干扰物样品组分数为2, 添加干扰物样品组分数为3。 定性分析结果显示, 无论有无添加干扰物, 两种二阶校正法都能准确的分辨出样本中的间甲酚和间苯二酚, 其中间甲酚的荧光峰位置为λem=298 nm/λex=274 nm; 间苯二酚的荧光峰位置为λem=304 nm/λex=275 nm。 定量分析结果显示, 用PARAFAC算法测定不添加干扰物的样本时, 对间甲酚和间苯二酚浓度的平均回收率分别达到了93.37%±4.92%和95.19%±5.25%; 测定添加干扰物样本时, 对间甲酚和间苯二酚浓度的平均回收率达到92.09%±2.64%和97.08%±5.26%。 用SWATLD算法测定不添加干扰物样本时, 对间甲酚和间苯二酚浓度的平均回收率分别达到了93.11%±4.73%和96.80%±5.04%; 测定添加干扰物样本时, 对间甲酚和间苯二酚浓度的平均回收率达到97.30%±4.52%和96.92%±5.61%, 且两种二阶校正方法得出的预测样本均方差(RMSEP)均小于0.03 mg·L-1。 实验结果表明, 在荧光光谱峰位置相近、 光谱严重重叠且有干扰物的情况下, PARAFAC和SWATLD两种二阶校正算法都能对水溶液中的酚类化合物进行快速、 准确地测定。
三维荧光 二阶校正 酚类化合物 小波包 平均回收率 Three-dimensional fluorescence Second-order correction Phenolic compounds Wavelet packet Average recovery rate 
光谱学与光谱分析
2020, 40(1): 113
作者单位
摘要
1 广西科技师范学院, 广西 来宾 533000
2 燕山大学 河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
多环芳烃广泛存在于大气、土壤和水环境中, 对动植物和人类有着严重危害。为了快速检测水环境中的痕量多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs), 本文提出利用激发-发射荧光矩阵结合自加权交替归一残差拟合算法(Self-Weighted Alternating Normalized Residual Fitting Algorithm, SWANRF)检测湖水中的菲、蒽和荧蒽。与自加权交替三线性分解方法相比, SWANRF能够给出更满意的浓度预测结果, 菲、蒽和荧蒽的平均回收率分别为(99.2±7.2)%, (101.7±7.7)%和(97.9±5.1)%; 菲、蒽和荧蒽的预测均方根误差值分别为0.240, 0.249和0.247 μg/L。实验结果表明, 文章提出的方法能够实现未知干扰物共存的湖水中痕量多环芳烃的快速检测, 且方法可靠。
激发-发射荧光矩阵 二阶校正 自加权交替归一残差拟合 多环芳烃 excitation-emission fluorescence matrix second-order calibration self-weighted alternating normalized residual fitt polycyclic aromatic hydrocarbons 
光学 精密工程
2019, 27(10): 2089
作者单位
摘要
1 燕山大学河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
2 天津做票君机器人科技有限公司, 天津 300450
多环芳烃(PAHs)是煤, 石油, 木材, 烟草等燃料和有机高分子化合物等有机物不完全燃烧时产生的一种持久性有机污染物。 迄今已发现有200多种PAHs, 其中有多种PAHs具有致癌性。 PAHs广泛分布于我们生活的环境中, 水中的PAHs主要来源于生活污水, 工业排水和大气沉降。 使用三维荧光光谱法, 结合BP神经网络与交替三线性分解(ATLD)算法对水中的PAHs进行定性和定量分析。 以苊(ANA)和芴(FLU)2种PAHs为目标分析物, 用甲醇(光谱级)制备样本。 使用FS920稳态荧光光谱仪对样本进行检测, 设置激发波长为200~370 nm, 间隔10 nm记录一个数据; 发射波长为240~390 nm, 间隔2 nm记录一个数据。 设置初始发射波长总是滞后激发波长40 nm, 以消除一级瑞利散射的干扰。 随后使用BP神经网络法对待测样本数据进行预处理。 利用BP神经网络基于误差反向传播算法(error back propagation training, BP)原理, 对测得的三维荧光数据进行数据压缩处理, 该方法具有柔性的网络结构与很强的非线性映射能力, 网络的输入层、 隐含层和输出层的神经元个数可根据实际情况设定, 并且网络的结构不同时, 性能也有所差异。 随后, 用ATLD算法分解预处理后的三维荧光光谱数据。 采用核一致诊断法确定待测样本的组分数为2。 结果表明, ATLD算法分解得到两种PAHs(ANA和FLU)的激发、 发射光谱图与目标光谱非常相似, 能实现光谱重叠严重的PAHs(ANA和FLU)的快速定性和定量分析, 实现了以“数学分离”代替“化学分离”。 将预测样本导入训练好的BP神经网络中, 得到处理后待测样本数据的网络均方差(MSE)均小于0.003, 网络的峰值信噪比(PSNR)均大于120dB(数据压缩中典型的峰值信噪比值在30~40 dB之间, 越高越好), 可见BP神经网络对样本数据的压缩效果较好。 BP神经网络训练后, 得到输出值与目标值之间的拟合度高, 拟合系数达0.998, 具有较好的数据压缩效果。 使用ATLD算法对待测样本进行分解后得到平均回收率为97.1%和98.9%, 预测均方根误差为0.081 8和0.098 5 μg·L-1。 三维荧光光谱结合BP神经网络和ATLD能够实现痕量PAHs的快速检测。
三维荧光光谱 交替三线性分解 BP神经网络 多环芳烃 Three-dimensional fluorescence spectroscopy Alternating trilinear decomposition BP neural network Polycyclic aromatic hydrocarbons 
光谱学与光谱分析
2019, 39(11): 3420

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!