王金艳 1马放 1郑磊 1田东贺 1[ ... ]郑权 1,2
作者单位
摘要
1 长春新产业光电技术有限公司, 吉林 长春 130103
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
紫外激光器是研究紫外共振拉曼光谱的重要工具,拉曼信号可以通过共振拉曼效应得到增强,从而降低拉曼测量的探测极限。本文研究了一种输出波长为228 nm的窄脉宽全固态紫外激光器。首先,以Nd:YVO4作为增益介质,采用电光调Q腔倒空技术,实现了纳秒量级914 nm基频光输出。然后,经过偏硼酸锂(LBO)晶体产生二次谐波,最终经偏硼酸钡(BBO)晶体获得四次谐波228 nm紫外激光。在此基础上,进一步研究了不同重复频率时基频光和倍频光功率的变化规律,优化了紫外激光器的输出效率。实验结果表明:当总抽运功率为30 W时,在10 kHz重复频率下,可获得最高平均功率为84 mW的228 nm紫外激光输出。228 nm激光在5~25 kHz重复频率范围内连续可调,脉冲宽度保持在2.8~2.9 ns,能够满足紫外光谱检测技术领域的应用需求。
228 nm激光器 紫外激光 腔倒空技术 二次谐波 228 nm laser ultraviolet laser cavity dumped laser second harmonic 
中国光学
2024, 17(1): 100
李奇 1王金艳 1季鑫 1王斌 1[ ... ]郑权 1,2
作者单位
摘要
1 长春新产业光电技术有限公司,吉林 长春 130103
2 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
371~385 nm波段的紫外激光器可以应用在超精密材料加工、激光多普勒冷却、光子纠缠和量子通讯等诸多领域。为实现这一波段激光输出,报道了一台可调谐翠绿宝石连续紫外激光器。首先,采用了水平偏振的635 nm红光半导体激光二极管阵列作为抽运源。其次,选用V型折叠腔结构,端面泵浦了长度为10 mm、Cr3+掺杂浓度为0.2at.%的国产翠绿宝石晶体,再利用长度为7 mm的I类位相匹配偏硼酸钡晶体进行腔内倍频。最后,微调节BBO晶体角度,实现了波长可连续调谐的371~385 nm连续运转的紫外激光输出。当泵浦光功率为17 W时,在波长为378 nm处得到最大稳定输出功率为1.25 W,泵浦光到紫外光的最大转换效率约为7.3%,波长为378 nm紫外激光光束质量因子沿着xy方向分别为1.13和1.12。
紫外连续激光器 371~385 nm可调谐激光 腔内倍频 翠绿宝石晶体 ultraviolet CW laser 371-385 nm tunable laser intracavity frequency doubling alexandrite crystal 
红外与激光工程
2023, 52(11): 20230129
作者单位
摘要
1 长春新产业光电技术有限公司,吉林 长春 130103
2 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
报道了全固态脉冲运转腔外四倍频289.9 nm紫外激光器。首先,基于Nd∶KGW晶体的受激拉曼散射机制,以Nd∶YVO4晶体作为增益介质,结合声光调Q技术,研制了一台1159.31 nm红外拉曼激光器。当二极管阵列的总抽运功率为20 W时,1159.31 nm激光的输出功率为983 mW,脉宽为13.5 ns。依次利用Ⅰ类相位匹配偏硼酸锂(LBO)和偏硼酸钡(BBO)晶体进行腔外二倍频和四倍频,实现了平均功率为108 mW的289.9 nm紫外激光输出,重复频率为10 kHz,脉冲宽度为8 ns,峰值功率为1.35 kW,四倍频转化效率为11%。测量了紫外激光的输出光斑,分析了平均功率随脉冲频率的变化关系。
激光器 二极管抽运激光器 拉曼激光器 紫外激光 声光调Q 
中国激光
2022, 49(7): 0701001
作者单位
摘要
1 同济大学物理科学与工程学院精密光学工程研究所, 上海 200092
2 同济大学先进微结构材料教育部重点实验室, 上海 200092
远紫外波段高反射薄膜的研究具有重要应用价值。为了实现高反射率,采用高温三步蒸发法沉积MgF2膜以保护Al膜,制备了远紫外宽带高反射薄膜,并对样品进行退火处理。结果显示,改进制备工艺和退火工艺后,紫外宽带高反射薄膜在121.6 nm处的反射率高达90%,接近理论设计值。同时分析了散射损耗的影响。采用优化的LaF3/MgF2膜系结构,制备了窄带反射滤光薄膜,其在中心波长122.5 nm处的峰值反射率为75%且半峰全宽为8 nm,达到了理论设计的预期效果,但退火处理损伤了薄膜表面,散射损耗增加,薄膜反射率下降。
薄膜 远紫外 反射薄膜 真空退火 
光学学报
2020, 40(9): 0931001
王金艳 1李奇 1陈曦 1,*郑权 1,2[ ... ]陈磊 1
作者单位
摘要
1 长春新产业光电技术有限公司, 吉林 长春 130103
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
研究了全固态脉冲运转腔外倍频244 nm深紫外激光器。采用V型谐振腔及主动调Q技术,对双二极管阵列抽运的914 nm和1047 nm基频光进行腔内和频产生488 nm高重复频率脉冲激光。在总抽运功率为44 W时,488 nm激光输出功率为527 mW。利用Ⅰ类相位匹配BBO晶体进行腔外倍频,实现了平均功率为28 mW的244 nm深紫外激光输出,重复频率为4 kHz,脉冲宽度为17.8 ns,倍频效率为5.3%。
激光器 全固态激光器 紫外激光 244 nm激光 
中国激光
2019, 46(9): 0901010
王金艳 1李奇 1陈曦 1,*郑权 1,2[ ... ]黄洋 1
作者单位
摘要
1 长春新产业光电技术有限公司, 吉林 长春 130103
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
设计了激光二极管抽运的424 nm腔内和频蓝光激光器。该激光器采用复合V型腔结构,利用Ⅰ类临界相位匹配的三硼酸锂(LiB3O5,LBO)晶体对掺镱钇铝石榴石(Yb∶YAG)晶体的1030 nm激光和掺镨氟化钇锂(Pr∶YLF)晶体的720 nm激光进行腔内和频。当Yb∶YAG晶体的抽运功率为5 W,Pr∶YLF晶体的抽运功率为3.1 W时,实现了18 mW连续运转424 nm蓝光激光的稳定输出,光-光转换效率为0.2%,水平及竖直方向的光束质量因子分别为1.62和1.50。
激光器 二极管抽运激光器 全固态激光器 蓝光激光器 和频 424 nm激光 
激光与光电子学进展
2019, 56(13): 131401
王菲 1,*王晓华 2王金艳 2房丹 2[ ... ]方铉 2
作者单位
摘要
1 长春理工大学 光电工程学院, 吉林 长春 130022
2 长春理工大学 理学院, 吉林 长春 130022
3 长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
给出了808 nm/980 nm双反射带布拉格反射镜的反射谱线,建立了光泵浦双反射带半导体激光器件的热学模型及其内部热载荷分布形式,运用有限元分析方法,详细分析了双反射带光泵浦半导体激光器件的热学特性。结果表明,对于激射光反射率为99.96%的单反射带和双反射带布拉格反射镜结构的垂直外腔面发射半导体激光器件,前者的散热性能较好,而后者的最大温升明显低于前者。本文的分析结果可为半导体激光器件的结构优化和实验研究提供理论参考。
光泵浦半导体激光器 有限元法 双反射带布拉格反射镜 热效应 optically pumped semiconductor laser finite element method double band mirror (DBM) thermal effect 
发光学报
2012, 33(3): 309
作者单位
摘要
1 长春理工大学理学院, 吉林 长春 130022
2 长春理工大学光电工程学院, 吉林 长春 130022
利用ANSYS有限元热分析软件对光抽运垂直外腔面发射激光器(OPS-VECSEL)内部的热场分布和热矢量分布进行了模拟,对比分析了两种散热结构的散热性能,讨论了抽运光斑的参量和金刚石散热片厚度对器件热特性的影响。模拟分析表明:在抽运功率密度较大时,与单面键合金刚石散热片结构相比,双金刚石散热片结构的OPS-VECSEL温升较低,引起的谐振波长差较小,热量向芯片上下两侧散失有利于器件的散热,并且随着抽运功率密度的增大,双散热片结构的散热优势就越明显;当上部金刚石散热片的厚度为500 μm、下部金刚石散热片的厚度在300~500 μm时可以实现很好的散热效果。
激光器 半导体激光器 光抽运 热管理 有限元法 
激光与光电子学进展
2011, 48(9): 091404
作者单位
摘要
洛阳师范学院物理与电子信息学院, 洛阳 471022
本文介绍了我们从拉曼光谱强度出发, 导出分子极化率, 从而研究分子结构信息的理论依据和研究方法, 并以硫脲分子为例, 通过分析其吸附在银电极上的表面增强拉曼光谱强度和水溶液的紫外拉曼光谱强度, 推断出硫脲在电极表面的吸附构形以及水溶液的结构, 结果表明: 从拉曼强度光谱出发, 确实可以得到许多有意义的物理结论, 而这些结论, 是单从拉曼频率是不能得出的。
拉曼强度 键极化率 硫脲 吸附构形 溶液结构 Raman intensities bond polarizability derivatives thiourea adsorption configuration solution structure 
光散射学报
2009, 21(1): 1

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!