马毅 1管迎春 1,2,*
作者单位
摘要
1 北京航空航天大学机械工程与自动化学院,北京 100083
2 北京航空航天大学大型金属构件增材制造国家工程实验室,北京 100191
极端服役环境对空天等核心构件可靠性和集成性提出了严峻挑战。传统单一材料体系和制造工艺难以满足复杂性能需求。激光增材制造技术是实现异质金属结构-功能一体化的有效途径,但异质材料兼容问题(易诱发缺陷、加工参数响应不一等)限制了高质量异质界面的形成,这对制造装备与连接工艺提出了更高挑战。本文基于异质金属激光增材制造的最新研究进展,聚焦异质金属成型的关键问题及解决方案,回顾了近年来异质金属体系的发展及空天领域应用,从送粉方式、复合制造等方面介绍了激光增材装备的改进策略,总结了近年来激光增材技术在连接方式、参数调控、监测预测和前后端处理方面的研究进展,并针对这一技术的共性及难点问题给出了展望与思考。
激光技术 异质金属 空天应用 增材装备 增材制造工艺 
中国激光
2024, 51(10): 1002304
作者单位
摘要
1 北京航空航天大学机械工程与自动化学院,北京 100083
2 清华大学机械工程学院,北京 100084
3 浙江移动信息系统集成有限公司,浙江 杭州 310000
4 北京航空航天大学大型金属构件增材制造国家工程实验室,北京 100191
5 北京航空航天大学国际交叉科学研究院,北京 100083
人工智能在智能制造领域中起着举足轻重的作用。近年来,激光制造技术以其精度高、可控性强等优势而逐渐成为先进制造的关键技术,在航空航天、****、新能源汽车、生物医疗等重要领域中发挥了重要作用。与此同时,人工智能在激光制造中的模拟预测、参数优化、过程控制、质量分析等方面展现了巨大的应用潜力。主要从激光制造装备和工艺这两个方面出发,总结了激光制造领域中人工智能的研究现状与应用情况,并对人工智能和激光制造技术的发展方向及应用前景进行了展望。
激光技术 激光制造 人工智能 在线监测 过程控制 智能制造 
中国激光
2023, 50(11): 1101005
作者单位
摘要
1 北京航空航天大学机械工程与自动化学院,北京 100083
2 北京航空航天大学大型金属构件增材制造国家工程实验室,北京 100083
3 北京航空航天大学国际交叉科学研究院,北京 100083
激光精密加工技术在航空航天、集成电路、医疗器械等战略新兴产业领域展现出了巨大优势。本文重点介绍了北京航空航天大学激光团队近年来在激光精密抛光、金属-复合材料高强连接、一站式功能表面制备、超快激光刀钻骨、超快激光助力硅晶圆制造等方面的研究进展,对相关结果进行分析与总结,并展望了激光精密加工技术的未来发展方向和应用前景。
激光技术 激光精密加工 激光抛光 异质材料连接 功能微纳结构 骨钻孔 智能制造 
中国激光
2022, 49(19): 1902001
王翼猛 1管迎春 1,2,3,4,*
作者单位
摘要
1 北京航空航天大学机械工程与自动化学院,北京 100083
2 北京航空航天大学大型金属构件增材制造国家工程实验室,北京 100083
3 北京航空航天大学国际交叉科学研究院,北京 100083
4 北京航空航天大学宁波创新研究院,浙江 宁波 315800

随着社会发展和医疗健康事业的进步,医用金属植入物等医疗器械在临床应用中出现的细菌感染、生物相容性不佳等瓶颈亟待解决。近年来,飞秒激光以其加工精度高、适用材料广、热效应低、灵活可靠等优势,成为医用材料表面改性备受关注的新技术。本文针对体液光谱检测、植入物表面细胞行为调控、口腔抗菌这三个具体临床应用场景,简述了制备表面微纳复合结构实现生物功能的基本原理,以及多功能微纳复合结构的制备原理,梳理了飞秒激光诱导微纳结构的应用进展及研究现状,以期为相关研究人员提供线索和依据。

激光技术 飞秒激光 微纳结构 功能表面 生物相容性 光谱检测 
中国激光
2022, 49(10): 1002601
胡国庆 1,2管迎春 1,2,3
作者单位
摘要
1 北京航空航天大学机械工程及自动化学院,北京 100191
2 北京航空航天大学合肥创新研究院,安徽 合肥 230012
3 大型金属构件增材制造国家工程实验室,北京 100191
随着现代工业的发展, 复杂加工环境和对象、 大动态范围、 高效率和高精度激光加工需求愈加迫切, 在线监测并实时优化激光加工参数是一条重要的解决途径。 与此同时, 激光与物质相互作用时可产生与加工参数、 加工过程和目标特性密切相关的光信号和表面光学特性变化, 在线测量光信号光谱可分析加工过程和状态, 故光谱测量有望成为一种重要的激光加工在线监测手段。 实际上, 光谱测量已应用于激光焊接、 激光切割和钻孔、 激光清洗打磨、 微纳结构制备和增材制造等几乎所有激光加工工艺, 具有分辨率高和光谱信息丰富等特点。 分析和总结了用于激光加工在线监测的光谱测量技术, 包括等离子体光谱、 反射光光谱和非线性光信号光谱等。 基于单脉冲和多脉冲激光加工激发等离子体信号的光谱测量, 除实现化学成分定性和定量监测外, 还可以根据特征谱线相对强度变化实时调焦, 根据等离子体温度监测和调控激光加工过程中与热效应相关的物理过程; 作为一种无损伤且工作距离较远的监测方法, 反射光光谱监测可通过测量特定波段反射光信号光谱积分功率、 特征谱线和波段位置和强度来有效监测材料表面清洁度、 损伤、 色度和成分变化等; 而在特定条件下产生的谐波信号、 荧光信号和拉曼信号等非线性光信号, 尽管应用场景有限, 但提供了一种实现成分、 焦距和材料损伤等监测的新方法。 进而, 展望了光谱测量在激光加工在线监测上应用的未来发展趋势, 包括多种光信号的光谱协同监测与光、 声、 温度及图像等多种信号测量的复合监测。 同时, 人工智能技术与在线监测和激光加工的深入结合将进一步推动激光加工技术的智能化发展。
光谱测量 激光加工 在线监测 研究进展 Spectral measurement Laser processing On-line monitoring Research process 
光谱学与光谱分析
2021, 41(8): 2343
崔智铨 1管迎春 1,2,3,4,*
作者单位
摘要
1 北京航空航天大学机械工程与自动化学院, 北京 100191
2 北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191
3 北京航空航天大学国际交叉研究院, 北京 100191
4 北京航空航天大学合肥创新研究院, 安徽 合肥 230013
超快激光具有脉冲能量高、加工精度高、热影响区小等特性,在材料加工尤其是微纳加工和表面改性中具有独特优势。介绍了超快激光加工金属材料的典型数值模拟方法,综述了近十几年来关于超快激光加工金属材料过程中烧蚀、等离子体效应和周期性表面结构形成机理的数值模拟研究进展,讨论了阐述三种机理的若干种模型和局限,总结了当前超快激光加工数值模拟所面临的挑战,并对今后的研究重点进行了展望。
激光技术 超快激光 数值模拟 激光加工 烧蚀 等离子体 周期性表面结构 
激光与光电子学进展
2020, 57(11): 111408
张佳茹 1,*管迎春 1,2,3,4
作者单位
摘要
1 北京航空航天大学 机械工程与自动化学院, 北京 100191
2 北京航空航天大学 大型金属构件增材制造国家工程实验室, 北京 100191
3 北京航空航天大学 国际交叉研究院, 北京 100191
4 北京航空航天大学 合肥创新研究院, 合肥 230013)
提高医疗植入材料的生物相容性, 对提升植入医疗器械的安全性有重要意义。通过超快激光制造出微纳米级别尺寸的材料结构以改善材料的生物相容性, 近年来已被广泛应用于生物医学领域。本文简单介绍了细胞与生物材料相互作用原理, 从生物材料表面微结构对其生物相容性能的影响出发, 综述了超快激光加工不同材料表面形貌特征对细胞粘附、迁移、增殖、分化的影响, 并进一步指出超快激光制备微纳结构在生物材料领域的局限和发展趋势。
生物材料 超快激光 微纳结构 细胞行为 biomaterials ultrafast laser micro/nano-structures cell behavior 
中国光学
2019, 12(2): 199
作者单位
摘要
1 北京航空航天大学机械工程及自动化学院,北京 100191
2 北京航空航天大学大型金属构件增材制造国家工程实验室,北京 100191
紫外激光以其波长短、加工精度高、冷加工等特性,在微细制造中具有独特优势,能够有效提高制造品质。近年来,随着现代电子产业的快速发展,其对生产制造的要求不断提高,紫外激光的应用和发展也受到人们的广泛关注。紫外激光在微加工过程中对材料尺寸形状要求小,加工过程灵活可变,产生的热影响区小,能够实现精密复杂结构的加工。本文介绍了紫外激光器的发展过程,并对目前主要用于微加工的两类紫外激光器:准分子激光器和全固态激光器的工作原理和技术特点进行了简要的概述。重点讨论紫外激光在半导体、光学元件和聚合物等领域的技术发展和应用现状,并进一步对未来研究方向进行预测和展望。
紫外激光器 激光微加工 半导体材料 微光学元件 聚合物 UV laser laser micromachining semiconductor micro-optical element polymer 
光电工程
2017, 44(12): 1169
作者单位
摘要
1 北京航空航天大学机械工程与自动化学院, 北京 100191
2 北京航空航天大学国际交叉研究院, 北京 100191
3 College of Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
激光微加工具有超快、超精密的特性, 在医疗器械加工中有着独特的优势, 尤其是针对具有良好生物相容性材料的微加工有着不可替代的作用。系统总结了激光微加工制备技术在生物医学领域的若干最新应用, 重点讨论了生物材料表面微加工、医学元件和血管支架微结构制备以及三维生物支架快速成型等技术, 并进一步指出现有激光微加工制备生物医用材料的局限和发展趋势。
激光制造 激光微加工 生物医学 微结构 生物材料 医学元件 
中国激光
2017, 44(1): 0102005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!