史淑静 1李卓 1,2,*杨晨 2曾子恒 2[ ... ]王华明 1,2
作者单位
摘要
1 北京航空航天大学宁波创新研究院,浙江 宁波 315800
2 北京航空航天大学大型金属构件增材制造国家工程实验室,北京 100191
γ′相强化镍基高温合金以其良好的高温组织与性能稳定性被广泛应用于航空航天、石油化工、汽车能源等领域,激光增材制造可满足现代工程领域对零部件内部结构优化与自身轻量化的要求,成为镍基高温合金复杂结构零部件制造与修复的新兴技术。然而,传统牌号的高强镍基高温合金的成分及强化机制与激光增材制造快速非平衡凝固及固态相变过程不适配,较宽的凝固温度区间和失衡的高温强韧性易引起微裂纹缺陷,难以保证合金的组织完整性和力学性能,严重制约了激光增材制造技术在高性能高温合金中的应用推广。基于此,本文综述了激光增材制造γ'相强化镍基高温合金裂纹的形成原因和影响因素,根据开裂机理从成分修正、成形工艺参数优化、后处理制度调控等方面总结了裂纹控制相关研究进展,探讨了当前能从根源上抑制裂纹的专用合金成分开发策略,并对激光增材制造γ'相强化镍基高温合金的未来发展方向进行了展望。
激光技术 增材制造 高温合金 裂纹 优化与设计 
中国激光
2024, 51(10): 1002302
作者单位
摘要
1 北京航空航天大学机械工程与自动化学院,北京 100083
2 北京航空航天大学大型金属构件增材制造国家工程实验室,北京 100083
3 北京航空航天大学国际交叉科学研究院,北京 100083
激光精密加工技术在航空航天、集成电路、医疗器械等战略新兴产业领域展现出了巨大优势。本文重点介绍了北京航空航天大学激光团队近年来在激光精密抛光、金属-复合材料高强连接、一站式功能表面制备、超快激光刀钻骨、超快激光助力硅晶圆制造等方面的研究进展,对相关结果进行分析与总结,并展望了激光精密加工技术的未来发展方向和应用前景。
激光技术 激光精密加工 激光抛光 异质材料连接 功能微纳结构 骨钻孔 智能制造 
中国激光
2022, 49(19): 1902001
刘炳森 1,2张述泉 1,2张纪奎 1,2,3王华明 1,2朱言言 1,2,3,*
作者单位
摘要
1 北京航空航天大学前沿科学技术创新研究院,北京 100191
2 北京航空航天大学大型金属构件增材制造国家工程实验室,北京 100191
3 北京航空航天大学宁波创新研究院,浙江 宁波 315800
定向能量沉积激光增材制造逐点逐层熔化堆积的工艺特点决定了工艺参数会对成形态钛合金构件的显微组织和力学性能产生显著影响,最终决定激光增材制造钛合金构件能否达到工程应用的性能要求。以先进航空发动机整体叶盘使用量较大的TC17近β型高强钛合金为研究对象,制备了两种不同层间冷却时间下的激光增材制造TC17钛合金构件,详细研究了层间冷却对成形构件晶粒形貌、显微组织和拉伸性能的影响,探究了热处理对组织演变及拉伸性能的影响。结果表明:随着层间冷却时间的增加,激光增材制造TC17钛合金的显微组织由双态组织转变为超细α片层网篮组织,β晶粒尺寸无显著变化,α相含量增加而片层宽度下降。连续成形试样具有良好的综合力学性能,其沿沉积增高方向的抗拉强度可达到1128 MPa,断后伸长率为10.5%,断口形貌为典型的韧性断裂;层间冷却时间增加会导致沉积态试样强度提高、塑性下降,断裂机制转变为解理脆性断裂。三重热处理可以改善层间冷却时间不同造成的组织和拉伸性能的差异,但难以获得优异的综合力学性能。
激光技术 激光增材制造 TC17 层间冷却 热处理 显微组织 拉伸性能 
中国激光
2022, 49(14): 1402204
作者单位
摘要
增材制造俗称3D打印, 融合了计算机辅助设计和材料加工与成形技术。它以数字模型文件为基础, 利用软件与数控系统将各种材料通过挤压、烧结、熔融、光固化、喷射等方式逐层堆积, 最终制造出实体物品。相对于传统的对原材料进行切削和组装的加工模式, 增材制造是一种“自下而上”材料累加的制造方法, 使得受传统制造方式约束因而无法实现的复杂结构件的制造成为可能。激光3D打印是众多3D打印技术中的一类, 用激光作为烧结、熔融、光固化的光热源, 发挥了激光的指向性、高亮度、可聚焦等优势。
激光与光电子学进展
2018, 55(1): 011400
王宏芳 1,2田象军 1,2程序 1,2,*刘栋 1,2王华明 1,2
作者单位
摘要
1 北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191
2 北京航空航天大学材料科学与工程学院, 北京 100191
通过单轴等温热压缩实验,研究了激光增材制造TC18钛合金在不同变形条件下的热变形行为,分析了其流变应力-应变规律和动态软化机制,建立了峰值应力本构方程。结果表明,激光增材制造TC18钛合金的流变应力-应变曲线表现为连续软化和稳态流变两种特征,其激活能为476.8 kJ·mol-1。当热加工温度处于α+β两相区时,软化机制为动态回复;而当热加工温度处于β单相区时,软化机制为动态再结晶。激光增材制造TC18钛合金较理想的热加工工艺参数:变形温度为830~880 ℃、应变速率为0.001~0.003 s-1和变形温度为750~760 ℃、应变速率为0.001~0.002 s-1。
激光技术 激光增材制造 TC18钛合金 热变形 热加工图 
中国激光
2018, 45(3): 0302008
刘小欣 1,2,*程序 1,2王华明 1,2李佳 1,2
作者单位
摘要
1 北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191
2 北京航空航天大学材料科学与工程学院, 北京 100191
研究了基材热处理态和激光扫描速率对多道沉积DD5单晶高温合金沉积道内的杂晶(SGs)形核位置及数量的影响, 探讨了不同条件下杂晶的形成机理。结果表明, 当激光扫描速由5 mm/s增大到20 mm/s时, 沉积道顶部的柱状晶-等轴晶转变(CET)导致杂晶数目减少; 采用固溶方式处理基材时, 沉积道底部杂晶的尺寸和数量较铸态基材的明显减小; 沉积道之间的相互搭接不会产生新的杂晶;当采用固溶态基材、激光扫描速率为20 mm/s时, 基本可以得到无杂晶的多沉积道搭接界面。
激光技术 激光熔化沉积 单晶高温合金 杂晶形成 多道沉积 显微组织 
中国激光
2017, 44(6): 0602009
刘正武 1,2,*程序 1,2李佳 1,2王华明 1,2
作者单位
摘要
1 北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191
2 北京航空航天大学材料科学与工程学院, 北京 100191
采用激光增材制造技术制备了05Cr15Ni5Cu4Nb沉淀硬化不锈钢板件, 分析了沉积态、调整态、固溶态组织经时效热处理后的显微组织、析出相及力学性能, 并优化了热处理工艺。结果表明: 沉积态组织主要由外延生长的柱状晶组成, 柱状晶内包含多个胞状枝晶, 枝晶间存在残余铁素体, 沉积态组织抗拉强度为1128.5 MPa。经时效热处理后, 残余铁素体消除, 马氏体板条中弥散分布NbC颗粒和大量纳米级ε-Cu相。与沉积态组织相比, 时效态组织的显微硬度和拉伸强度均有大幅提高, 直接时效态和固溶时效态组织的塑性稍有降低, 但抗拉强度分别达1440 MPa和1367 MPa; 调整时效态组织可获得良好的强韧性配比, 延伸率与抗拉强度分别为16%和1164.5 MPa。
激光技术 激光增材制造 显微组织 力学性能 
中国激光
2017, 44(6): 0602010
何博文 1,2,3,*冉先喆 1,2,3田象军 1,2,3王华明 1,2,3
作者单位
摘要
1 北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191
2 国防科技工业激光增材制造技术研究应用中心, 北京 100191
3 大型整体金属构件激光直接制造教育部工程研究中心, 北京 100191
采用浸泡和电化学腐蚀测试方法,研究了激光增材制造TC11 钛合金在盐酸溶液中的耐蚀性,利用扫描电镜分析了腐蚀前后合金表面的微观形貌。结果表明:激光增材制造TC11钛合金中α相所含Mo元素较少,易于发生选择性优先溶解;在盐酸溶液中,随浸泡时间的延长,开路电位先降低后逐步升高,电荷转移电阻Rct先急剧下降后逐渐保持稳定,自腐蚀电流密度icorr升高;激光增材制造TC11 钛合金α+β网篮组织较锻件双态组织细小,具有更好的耐蚀性;双重退火热处理后,α相含量增多并粗化,耐蚀性略有下降。
激光技术 激光增材制造 TC11钛合金 盐酸 耐蚀性 
中国激光
2016, 43(4): 0403004
王志会 1,2,3,4,*王华明 1,2,3,4刘栋 1,2,3,4
作者单位
摘要
1 北京航空航天大学大型金属构件增材制造国家工程实验室, 北京
2 100191
3 国防科技工业激光增材制造技术研究应用中心, 北京 100191
4 大型整体金属构件激光直接制造教育部工程研究中心, 北京 100191
采用激光增材制造技术制备了AF1410 超高强度钢厚板试样,采取均匀化热处理和AF1410 钢传统热处理工艺相结合的热处理制度。分析了其沉积态和热处理后的微观组织、硬度及室温拉伸性能变化。结果表明:激光增材制造的沉积态AF1410 超高强度钢试样组织表现出定向凝固的特征,硬度约为360 HV;经热处理后,试样中定向胞状凝固组织消失,组织细化,获得细小的回火马氏体组织,硬度达到510 HV 左右,室温屈服强度和抗拉强度分别达到1490 MPa和1610 MPa,延伸率和断面收缩率分别为12.8%和70%。
光学制造 激光增材制造 AF1410超高强度钢 显微组织 力学性能 
中国激光
2016, 43(4): 0403001
徐金涛 1,2,3,*李安 1,2,3刘栋 1,2,3王华明 1,2,3
作者单位
摘要
1 北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191
2 国防科技工业激光增材制造技术研究应用中心, 北京 100191
3 大型整体金属构件激光直接制造教育部工程研究中心, 北京 100191
以高纯Cr、Ni、Si粉末为原料,采用激光熔覆技术在奥氏体不锈钢1Cr18Ni9Ti表面原位合成制备金属硅化物涂层,分析涂层微观组织结构并测量其显微硬度。采用阳极极化方法评价涂层在质量分数为3.5%的NaCl溶液中的电化学耐蚀性。在室温滑动干磨条件下评价其耐磨性,以失重表征耐磨性。利用光学显微镜(OM),扫描电子显微镜(SEM)等手段从显微角度研究涂层的失效行为。结果表明,涂层具有致密的微观多相结构,以Cr3Si二元金属硅化物为硬质增强相,以Ni基固溶体γ相为塑性增韧基体相。涂层表现出更高的显微硬度。在3.5% NaCl溶液中涂层形成抗点蚀性能优异的钝化膜,使其具有优异的电化学耐蚀性能。在室温滑动干磨条件下涂层拥有更小的失重以及更稳定的摩擦系数,能够与对磨副GCr15发生更少的粘着,从而表现出优异的耐磨性。
激光技术 激光熔覆 原位合成 耐蚀性 耐磨性 
中国激光
2016, 43(3): 0303006

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!