作者单位
摘要
安徽大学, 农业生态大数据分析与应用技术国家地方联合工程研究中心, 安徽 合肥 230601
人们日常膳食中常见的食用油含有丰富的饱和脂肪酸, 饱和脂肪酸能为人体提供能量和必须营养物质, 但过量摄入会导致多种心血管疾病。 结合反射率光谱和深度学习方法发展一种食用油中饱和脂肪酸含量的分析方法。 首先, 测量了菜籽油、 大豆油、 葵花籽油、 玉米油、 橄榄油、 芝麻油及花生油等7种食用植物油350~2 500 nm范围的反射光谱, 并通过气相色谱-质谱分析法获得其软脂酸、 花生酸及山嵛酸等饱和脂肪酸的含量。 使用中心化、 多元散射校正、 标准正态变量变换及标准化等算法做光谱预处理消除光谱噪声。 然后, 构建了一种新型的二维光谱卷积回归网络(S2DCRN)用于脂肪酸分析, 而全卷积网络(FCN)、 偏最小二乘回归(PLSR)、 支持向量回归(SVR)及随机森林(RF)用于与S2DCRN模型相对比。 最后, 采用序列前向选择(SFS)、 随机蛙跳(RFrog)及遗传算法选取光谱特征的重要波长, 进而构建更为简单稳健的分析模型。 实验结果表明, 对食用油的全光谱预处理后, S2DCRN模型性能最优, 其模型对预测集的决定系数(RP2)达到0.987 9, 均方根误差(RMSEP)为0.510 0。 基于重要波长的S2DCRN模型, RFrog-SFS为S2DCRN提供了最佳的预测结果RP2=0.967 9, RMSEP=0.462 7。 虽然变量选择后所取得的分析效果略差, 但光谱波长数目不足全光谱的1%, 节省了光谱数据采集工作并大幅降低了模型复杂度, 有助于后续便携式简化检测装置的研发。 为进一步探究S2DCRN模型的通用性能, S2DCRN被用于食用油中花生酸和山嵛酸含量分析。 其中, S2DCRN对花生酸的预测结果较好RP2=0.950 1, RMSEP=0.152 9。 所提出的S2DCRN可实现反射率光谱对食用油中多种脂肪酸的准确快速分析。
食用油 饱和脂肪酸 反射光谱 卷积神经网络 Edible oil Saturated fatty acids Reflectance spectroscopy Convolutional neural network 
光谱学与光谱分析
2022, 42(5): 1490
作者单位
摘要
1 中国科学院合肥物质科学研究院, 安徽 合肥 230031
3 农业生态大数据国家地方联合工程研究中心, 安徽大学, 安徽 合肥 230601
农药直接污染环境和食物, 最终被人体吸收。 其残留物具有高毒性, 对人体健康造成严重影响。 色谱法、 气液色谱串联质谱法等在农药残留检测中应用较为广泛, 但存在预处理步骤复杂、 费时耗力等缺点。 表面增强拉曼光谱(SERS)技术因具备灵敏度高、 特异性好、 提供全面指纹信息且对样品无损等优点被视为一种新型农残检测方法, 可通过简单提取实现液体或固体样品中痕量农药残留的高效检测。 在这篇综述中, 主要从SERS的增强基底制备、 检测方法以及光谱智能解析三个方面对农药残留SERS检测技术及方法的研究进展进行综述, 以期为农药残留检测方法提供新的参考。 首先, 针对SERS增强基底制备, 单一的贵金属溶胶纳米颗粒因其“热点”随机、 不可控等因素导致稳定性和灵敏性较差, 已不能满足痕量农药残留检测。 为提高SERS基底的吸附能力使待测物在其表面富集且信号不发生显著变化, 对单一贵金属溶胶纳米颗粒进行组装, 或加入化学物质、 惰性材料等进行修饰制备均一性高的SERS复合基底, 保证SERS信号有良好的重现性和灵敏性。 其次, 为了实现特异性和高灵敏检测, SERS检测方法不再只以单纯的金、 银纳米颗粒作为增强基底, 而是逐渐趋向于优化样本前处理技术、 化学修饰法制备特异性SERS探针、 基底物理结构突破以及动态SERS(D-SERS)检测等方向发展。 在获得物质的拉曼光谱后, 有效拉曼特征区通常在较短的波数范围内, 而光谱数据高达上千维, 冗余较多, 导致后续分析复杂度增加。 SERS光谱智能分析则采用化学计量学方法对原始光谱进行预处理、 特征提取和模型构建, 实现数据降维和主要信息提取, 进而实现农残的定性与定量。 综上, SERS作为一种快速检测农药残留的方法具有很好的发展前景, 可为今后的分析检测领域提供新的借鉴。
表面增强拉曼光谱 农药残留 特异性SERS探针 动态SERS 化学计量学 Surface-Enhanced Raman Spectroscopy Pesticide residues Specific SERS probes Dynamic SERS Chemometrics 
光谱学与光谱分析
2021, 41(11): 3339
作者单位
摘要
安徽大学, 国家农业生态大数据分析与应用工程研究中心, 安徽 合肥 230601
名优大米含有更多的营养价值与更高的经济价值, 不法商家为赚取更多利益, 对优质大米掺假甚至以次充好, 损害了消费者利益和大米贸易, 打击了生产者的生产积极性。 希望发展一种基于高光谱成像的图谱特征与深度学习网络的名优大米无损鉴别方法。 首先, 采集了全国具有代表性的七种名优大米400~1 000 nm范围高光谱图像, 并提取了每种大米的光谱、 纹理与形态特征。 使用多元散射校正算法做光谱预处理消除光谱散射。 连续投影算法(SPA)、 竞争自适应重加权算法(CARS)以及两者级联方法(CARS-SPA)被用来选取光谱特征的重要波长; 用 SPA选择形态、 纹理特征的重要变量。 最后, 使用深度学习网络-卷积神经网络(CNN)融合各类特征构建大米种类识别模型, 而K-近邻(KNN)、 随机森林(RF)用于与CNN模型相对比。 实验结果显示, 根据全光谱构建的模型的分类准确度达到80%以上; 其中, KNN建模效果最差; RF的效果较好; CNN网络的模型性能最优, 训练集的分类准确度(ACCT)为92.96%, 预测集的分类准确度(ACCP)为89.71%。 而重要波长光谱与全光谱相比, 分类准确度相差较多。 为进一步提升大米种类鉴别的准确度, 选用纹理、 形态两种图像特征与光谱特征进行融合, 最优结果来自光谱与形态特征重要变量所构建的模型。 其中, KNN的ACCT和ACCP分别为69%和67%; RF模型的ACCT=99.98%和ACCP=89.10%; CNN模型的效果最佳, ACCT和ACCP为97.19%和94.55%。 此外, 光谱与纹理融合的分类效果差于光谱, 说明纹理特征弱化了分类结果。 对于分类模型来说, CNN的性能明显优于两种机器学习方法, 可以提供更好的分类效果。 总而言之, CNN融合光谱与形态特征重要变量可实现对名优大米种类的准确鉴别, 这种方法有望拓展到其他农产品的分级, 种类区分和产地鉴别。
高光谱成像 名优大米 图谱特征 卷积神经网络 Hyperspectral imaging High-quality rice Image and spectral features Convolutional neural network 
光谱学与光谱分析
2020, 40(9): 2826
作者单位
摘要
安徽大学安徽省农业生态大数据工程实验室, 安徽 合肥 230601
杀螟硫磷是一种在农作物上广泛使用的有机磷杀虫剂, 常用于玉米上害虫的防治。 过量或者不合理施用导致的残留积累关系到食品安全和人体健康。 常规检测杀螟硫磷的方法有气相色谱-质谱法、 高效液相色谱法, 其准确性虽好, 但存在需要专业人员介入、 样品前处理复杂、 检测时间长等缺点。 表面增强拉曼光谱(SERS)法具有分析速度快、 检测灵敏度高和特异性好等优点, 被广泛应用于农产品中痕量残留的快速检测。 利用表面增强拉曼光谱结合化学计量学方法实现玉米中杀螟硫磷残留的准确检测。 以两步种子生长法合成的纳米金棒作为拉曼增强基底, 测量600~1 800 cm-1范围内的拉曼光谱。 对比杀螟硫磷乙醇溶液和金棒的光谱, 确定杀螟硫磷的特征峰在650, 830, 1 082, 1 241, 1 344和1 581 cm-1处。 采用简单预处理方法快速提取玉米中的杀螟硫磷残留。 将受污染的玉米样品粉碎后, 利用乙醇溶剂对残留进行两次提取, 每次获取的提取液经离心获得上清液, 将上清液合并混匀, 在水浴中蒸发浓缩, 浓缩后的上清液用于采集SERS光谱。 每个浓度制备50个平行样本。 各浓度残留提取液中的残留参考值采用色质联用方法测定。 对比残留提取液的光谱, 1 082, 1 241和1 581 cm-1处特征峰强度随残留浓度的降低而迅速变弱甚至消失, 650, 830和1 344 cm-1处的特征峰直至残留浓度为0.48 μg·mL-1时依然可见。 当浓度低至0.37 μg·mL-1时, 所测光谱与空白提取液光谱相似。 采用主成分分析(PCA)提取不同浓度杀螟硫磷残留光谱的主体信息, 其中残留为0.37 μg·mL-1和空白提取液光谱的主成分得分重叠, 进而判断SERS方法对玉米中杀螟硫磷残留的检测限可达到0.48 μg·mL-1, 低于国家规定的农作物中最大残留限, 体现出SERS检测的高灵敏性。 选取浓度为14.25 μg·mL-1的50个样本分析其650, 830和1344 cm-1处的特征峰强度变化可知, 所采集的光谱呈现出较好的重复性, 相对标准偏差(RSD)值仅为3.12%。 对杀螟硫磷残留的定量分析采用支持向量机回归(SVR)实现, Savitzky-Golay卷积平滑和小波变换(WT)用于本次光谱数据的预处理。 校正集和预测集样本的划分采用Kennard-Stone算法实现, 模型的性能采用校正均方根误差(RMSEC)、 校正集决定系数(R2c)、 预测均方根误差(RMSEP)和预测集决定系数(R2p)评估。 最优模型为SVR结合WT所构建的, 具有最小的预测误差, 其中校正集的RMSEC=0.103 2 μg·mL-1, R2c=0.999 74, 预测集的RMSEP=0.134 1 μg·mL-1, R2p=0.999 60。 同时, 最优模型的预测值与色质联用法所测值基本一致, 其预测回收率为95.31%~100.66%。 以上表明, SERS结合化学计量学方法检测玉米中杀螟硫磷残留是准确可行的, 且有望推广到农作物中多种农药残留的检测, 为农产品的安全检测提供一种新思路。
表面增强拉曼光谱 杀螟硫磷 玉米 支持向量机回归 Surface-enhanced Raman spectroscopy Fenitrothion Maize SVR 
光谱学与光谱分析
2018, 38(9): 2782
作者单位
摘要
1 安徽大学安徽农业生态大数据工程实验室, 安徽 合肥 230601
2 安徽三联学院电子电气工程学院, 安徽 合肥 230601
3 中国科学院合肥技术创新工程院, 安徽 合肥 230031
动态表面增强拉曼光谱是在干态与湿态表面增强拉曼光谱(SERS)检测的基础上发展而来的, 不仅具有极好的信号增强, 还具有良好的重复性与稳定性。 提出了一种基于动态SERS与多元分析方法的敌瘟磷快速定量分析方法。 实验中, 首先测量100, 50, 10, 5, 1, 05和01 mg·L-1敌瘟磷动态SERS谱图, 并使用多项式校正方法去除光谱基线漂移。 然后, 处理后的全范围(600~1 800 cm-1)与特征范围(674~713, 890~1 195, 1 341~1 399和1 549~1 612 cm-1)光谱分别利用支持向量机回归(SVR)构建定量模型, 实现对敌瘟磷的定量分析。 同时, 实验还评估了主成分分析(PCA)对定量分析结果的影响。 实验结果表明特征范围光谱所建立的模型预测误差较小, 而数据经过PCA处理后预测误差得到进一步下降。 最优回归模型是由特征范围光谱经PCA处理后所构建的模型(RMSECV=0065 7 mg·L-1), 模型能够准确地预测敌瘟磷溶液浓度。 为了测试实际检测中的效果, 该方法被用来对苹果表面的敌瘟磷残留进行检测, 并通过气相色谱法进行验证。 结果表明该方法对于同一样本多次检测值波动较小, 且检测均值与气相色谱检测值相差较小, 相对误差最大仅为513%。 此外, 动态SERS检测可在2 min内完成, 且后续数据处理也可在数秒内完成, 同时整个过程的试剂消耗仅在2 μL左右。 因此, 所提出的方法在敌瘟磷快速准确检测具有极大优势。
动态表面增强拉曼光谱 多元分析方法 敌瘟磷 快速定量分析 Dynamic surface-enhanced Raman spectroscopy Multivariate analysis method Edifenphos Rapid and quantitative analysis 
光谱学与光谱分析
2018, 38(2): 454
罗伟 1,2曾新华 2李淼 2郑守国 2[ ... ]王绍祺 1,2
作者单位
摘要
1 中国科学技术大学, 安徽 合肥 230026
2 中国科学院合肥智能机械研究所, 安徽 合肥 230031
针对当前痕量Hg2+检测大多是借助于大型化学分析仪器在实验室条件下完成而无法满足现场检测需求的现状, 基于量子点荧光淬灭原理设计了一种反射式痕量Hg2+检测传感器, 主要包括荧光感知和电信号处理两个模块。 荧光感知模块主要由激光光源、 光路准直及光电探测器构成, 实现了荧光信号的激发和感知。 电信号处理模块完成了对感知信号放大滤波等处理, 最终在linux系统的QT界面中显示Hg2+浓度。 该传感器系统实现了仪器的小型化与低成本。 试验表明Hg2+浓度在15.0×10-9~1.8×10-6 mol·L-1范围内, 传感器检测结果具有很好的线性关系, 回归拟合方程为V0/V=1.309 13+3.37c, 其中c为Hg2+浓度, 单位为μmol·L-1; V0为空白检测值, 单位为mV), 线性度为0.989 26。 离子抗干扰实验中, Ca2+, Mn2+, Pb2+对Hg2+检测结果有微弱影响(4%~7%), 其他常见离子的影响(<3%)可以忽略, 表明传感器具有优越的选择性。 传感器响应时间为35 s, 并具有良好的重复性和选择性, 实现了痕量Hg2+的现场快速有效检测。
荧光 量子点 汞检测 嵌入式系统 Fluorescence Quantum dots Mercuric ions Embedded system 
光谱学与光谱分析
2015, 35(11): 3236
翁士状 1,2,*陈晟 1,2曾新华 2李盼 1,2[ ... ]朱泽德 1,2
作者单位
摘要
1 中国科学技术大学, 安徽 合肥230026
2 中国科学院合肥智能机械研究所, 安徽 合肥230031
利用表面增强拉曼光谱(SERS), 结合主成分分析(PCA)与分段线性回归(SLR)算法实现乙基对氧磷的定量检测。 首先采集820~1 630 cm-1乙基对氧磷溶液SERS, 并对820~1 630 cm-1(全范围)与845~875 cm-1(特征范围)光谱分别进行标准正态变换(SNV)、 多元散射校正(MSC)、 一阶导数绝对值、 二阶导数等预处理; 然后经PCA降维后利用SLR建立乙基对氧磷溶液浓度预测模型。 通过对比不同模型的预测准确度, 发现特征范围光谱采用MSC预处理后所建立的模型为最优, 总体预测均方误差值(RMSEP)为0.33, 满足乙基对氧磷定量检测的需要。
乙基对氧磷 表面增强拉曼光谱 主成分分析 分段线性回归 Ethyl paraoxon SERS PCA SLR 
光谱学与光谱分析
2013, 33(9): 2438
翁士状 1,2,*郑守国 2李盼 1,2陈晟 1,2[ ... ]郑晓菊 1,2
作者单位
摘要
1 中国科学技术大学信息科学技术学院, 安徽 合肥 230026
2 中国科学院合肥智能机械研究所, 安徽 合肥 230031
结合主成分分析(PCA)、偏最小二乘法(PLS)回归与表面增强拉曼光谱(SERS)实现杀螟硫磷溶液浓度的定量分析。测量600~1800 cm-1杀螟硫磷溶液SERS,对特征峰附近的光谱分别进行一阶导数绝对值、多元散射校正(MSC)与标准正态变换等预处理;利用PCA与PLS回归构建浓度预测模型。通过分组交替法检验模型性能,发现MSC处理后的光谱建立模型的预测准确度最高,分析精度满足杀螟硫磷的检测要求。
光谱学 表面增强拉曼光谱 主成分分析 偏最小二乘法回归 杀螟硫磷 
中国激光
2013, 40(8): 0815001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!