作者单位
摘要
1 上海大学 机电工程与自动化学院, 上海 200072
2 苏州大学 机器人与微系统研究中心, 江苏 苏州 215021
本文设计了一种由压电陶瓷驱动的应变片进行检测的平面三自由度纳米定位平台, 该平台采用的是平板铰链、直圆铰链及单边V型铰链导向的3-PRR结构。通过建立平台的伪刚体模型及对其进行位姿分析, 获得了平台的正、逆解。同时, 运用有限元分析方法对平台进行了仿真分析。搭建了3-PRR平面三自由度纳米定位平台测试实验系统对所设计平台进行试验。实验结果显示: 3-PRR平台沿x轴、y轴的行程及最大转角分别为-11.32~11.41 μm、-12.47~12.76 μm、3.63′, 对应的分辨率分别为71 nm、83 nm、1.35″。理论分析结果、有限元仿真结果与实验结果的最大误差分别为587%、6.19%, 验证了理论分析和有限元仿真的正确性。x轴及y轴的位移输出与应变片的输出电压近似呈正比关系, 证实了利用应变片来检测3-PRR平台运动的可行性。
纳米定位 柔性铰链 压电陶瓷 有限元分析 位移检测 Nano-positioning flexible hinge piezoelectric ceramics finite element analysis displacement detection 
光学 精密工程
2017, 25(7): 1866
作者单位
摘要
1 上海大学 机电工程与自动化学院, 上海 200072
2 苏州大学 机器人与微系统研究中心, 江苏 苏州 215021
设计了一种基于尺蠖运动原理的压电直线驱动器, 用于解决光学领域中的精密定位问题。该驱动器采用了对称杠杆式位移放大机构, 在保证钳紧力的同时, 可以获得较大的驱动位移。阐述了尺蠖式压电驱动器的工作原理, 对杠杆式柔性放大机构的位移损失、压电陶瓷与柔性机构的耦合特性及箝位机构与中间驱动机构的刚度进行了分析。利用有限元软件Ansys对钳位机构和驱动机构的变形、应力、输出位移和固有频率等参数进行了仿真分析。最后, 搭建了实验平台, 测试了驱动器的各项性能。测试结果显示, 该驱动器的行程为±25 mm, 钳紧力为17 N, 承载力为11 N, 最大和最小步距分别为55 μm和60 nm。当驱动电压为150 V时, 驱动器的最高驱动速度为1.259 mm/s。得到的性能指标满足光学领域精密定位需要。
尺蠖驱动器 柔性铰链 压电陶瓷 有限元分析 inchworm actuator flexible hinge piezoelectric ceramic finite element analysis 
光学 精密工程
2015, 23(1): 184

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!