罗婷 1赵星 2,3,*赵云松 2,3李陶 4
作者单位
摘要
1 中国人民公安大学信息网络安全学院,北京 100038
2 首都师范大学数学科学学院,北京 100048
3 首都师范大学检测成像北京市高等学校工程研究中心,北京 100048
4 北京工商大学数学与统计学院,北京 100048
针对被测样品的组成物质已知且彼此不混合的情况,提出了一种结合能谱信息的单能谱计算机断层扫描(CT)图像重建方法。该方法利用已知物质作为基材料对CT投影数据的采集过程进行数学建模,然后对该非线性模型进行基材料图像的迭代求解。在求解中,通过将基材料“不混合”的性质转化为向量正交性,实现了迭代过程的快速收敛。本文方法充分考虑了X射线的能谱和被测样品材料的属性,可显著地校正传统CT图像中的硬化伪影和金属伪影,有效地提高该类样品的CT成像质量。实验验证了所提方法的有效性。
成像系统 X射线计算机断层扫描 硬化伪影 金属伪影 基材料分解 
光学学报
2024, 44(8): 0811001
解博夫 1张帅 1李浩然 1冯昊 1[ ... ]赵星 1,2
作者单位
摘要
1 南开大学现代光学研究所,天津 300350
2 天津市微尺度光学信息技术科学重点实验室,天津 300350
随着应用光学领域的蓬勃发展,对于成像光学系统的像质需求越来越高。自由曲面的多设计自由度使其具有优异的像差补偿能力,常被用于高效像差补偿器件,而设计出具有良好像差补偿效果的自由曲面是提升系统像质的关键。这里基于矢量像差理论,介绍了一种针对成像系统像差补偿的Zernike型自由曲面设计方法。并以望远偏心系统作为实例,利用所提出方法设计了该系统的像差补偿自由曲面,并借助空间光调制器开展实验研究。仿真与实验结果均表明,所提出方法能够得到有效补偿望远偏心系统像差的自由曲面,像差补偿后光斑尺寸降低至补偿前的43.9%,其像差补偿效果优于传统标量像差理论优化法设计结果,该方法在自由曲面成像系统设计方面具有一定的应用研究价值。
应用光学 像差补偿 矢量像差理论 自由曲面 applied optics aberration compensation nodal aberration theory freeform surface 
红外与激光工程
2023, 52(7): 20230343
作者单位
摘要
1 南开大学现代光学研究所,天津 300350
2 天津市微尺度光学信息技术科学重点实验室,天津 300350
3 北京空间机电研究所,北京 100094
针对使用光纤光谱仪探测远距离宽光谱弱信号的应用需求,基于成像光学与非成像光学的混合设计方法,设计了大口径菲涅耳透镜聚光系统。系统由直径为1.1 m的菲涅耳透镜、匀光棒、全反射准直器和中继透镜组组成,接收端为直径为2 mm、数值孔径为0.22的光纤束。大口径菲涅耳透镜具有质轻体小的优点,解决了传统大口径透镜体积大质量大的问题。由匀光棒和全反射准直器组成的非成像光学元件后组可减小由菲涅耳透镜口径增大引起的球差和宽光谱色差,使光信号能量分布更加均匀且出射角度减小;中继透镜组进一步控制光束发散角和光斑尺寸,使光信号在光纤束端面高效率耦合,提高系统的光能利用率。仿真和实验结果均表明,所设计的后组系统能够减小像差影响,有效控制光束发散角度和光斑尺寸,提高光能利用率,满足光纤光谱仪对远距离宽光谱弱信号进行光谱探测的需要。
遥感 光学设计 聚光系统 大口径菲涅耳透镜 非成像光学理论 光能利用率 
中国激光
2023, 50(7): 0708011
作者单位
摘要
1 南开大学电子信息与光学工程学院现代光学研究所,天津 300350
2 天津市微尺度光学信息技术科学重点实验室,天津 300350
3 北京空间机电研究所,北京 100094
为满足激光雷达收集系统对远距离荧光信号探测要求,提出了一种基于多软件协同循环优化各环带面形的非球面环带菲涅耳透镜设计方法,并进行了透镜面形误差分析及透镜样件性能测试。利用该方法设计了一个直径为300 mm、焦距为670 mm的高收集效率菲涅耳透镜,使用LightTools软件对设计的菲涅耳透镜进行了光学仿真,收集效率可达52.2%。仿真和实验结果均表明:在400~950 nm光谱范围内,设计的菲涅耳透镜减小了透镜球差和色差对收集系统的影响,具有较高的能量收集效率,提高了系统光能利用率,满足系统性能指标要求。
非线性光学 光学设计 菲涅耳透镜 光丝激光雷达 收集系统 非球面透镜 
中国激光
2023, 50(7): 0708010
作者单位
摘要
1 南开大学软件学院,天津 300350
2 南开大学现代光学研究所,天津 300350
盐气溶胶是大气污染监测的重要对象。使用基于高功率超快激光的光丝诱导荧光光谱(FIFS)技术可以实现大气气溶胶的远距离快速定量分析,该技术有望成为下一代激光雷达的核心技术。用NaCl气溶胶模拟大气气溶胶污染物,针对自吸收效应导致光强与物质质量浓度偏离线性关系的问题,提出基于一维卷积神经网络的NaCl气溶胶质量浓度预测模型,并将其与多元线性回归模型、偏最小二乘回归模型、BP传播神经网络模型和定标曲线模型进行了对比实验。在各质量浓度(0.33~6.61 mg/m3)NaCl气溶胶全波段光谱数据集和特征波段光谱数据集上的实验结果表明:所提一维卷积神经网络模型在特征波段光谱数据集上的预测准确率为1,在泛化预测实验中的准确率为0.87,优于其在全波段光谱数据集上的结果,同时也优于其他模型。该模型对自吸收效应下的非线性定量分析具有良好的准确性和鲁棒性,为FIFS技术应用于大气气溶胶质量浓度预测分析提供了可靠的定量分析技术。
光谱学 光丝诱导荧光光谱 NaCl气溶胶定量分析 卷积神经网络 
中国激光
2023, 50(7): 0708007
解博夫 1赵星 1,2,*陶诗诗 1张帅 1[ ... ]刘伟伟 1,2
作者单位
摘要
1 南开大学现代光学研究所,天津 300350
2 天津市微尺度光学信息技术科学重点实验室,天津 300350
针对飞秒激光远距离成丝系统所产生的像差,基于光学自由曲面较强的像差补偿能力,提出了在飞秒激光成丝系统中使用透射式自由曲面相位板补偿系统像差的方法。首先,在光学设计软件中对实际系统像差特性进行了仿真建模。然后,对透射式自由曲面相位板进行了优化设计,优化后系统的像差得到了有效补偿,飞秒激光光斑质量得到了改善。最后,对优化设计后的自由曲面相位板进行了公差分析,并利用加工后的透射式自由曲面相位板开展了实验研究。结果表明,飞秒激光聚焦系统引入光学自由曲面相位板后,聚焦光斑形状规则,在聚焦位置处光斑的均方根(RMS)半径小于0.5 mm,飞秒激光成丝系统的像差得到了有效补偿,远距离飞秒激光的成丝强度得到了有效提高。
光学设计 像差补偿 飞秒激光成丝 光学自由曲面 
光学学报
2023, 43(8): 0822020
金康 1赵星 1,2张楠 1,2,*刘伟伟 1,2
作者单位
摘要
1 南开大学电子信息与光学工程学院现代光学研究所,天津 300350
2 天津市微尺度光学信息技术科学重点实验室,天津 300350
设计并制备了口径为20 mm的法布里-珀罗干涉仪,该干涉仪在632.8 nm处的光谱分辨率为0.5 nm,自由光谱范围为9.0 nm。将口径为1.1 m的低成本菲涅耳透镜用作集光元件,使用自行搭建的法布里-珀罗干涉仪和工业电荷耦合器件(CCD)相机成功探测到30 m外平均功率为0.7 mW的汞灯光谱,实现了μlx量级的弱光光谱探测。采用增强型互补金属氧化物半导体(ICMOS)相机,可在10 m外检测到飞秒激光光丝诱导的质量分数为13×10-6的NaCl气溶胶的时间分辨荧光光谱。建立的基于菲涅耳透镜和法布里-珀罗干涉仪的光谱测量装置在空气污染物和有害物质远程检测中具有广阔的应用前景。
光谱学 法布里-珀罗干涉仪 菲涅耳透镜 远程光谱探测 光丝诱导荧光光谱 
中国激光
2023, 50(7): 0708006
Author Affiliations
Abstract
1 Institute of Modern Optics, Nankai University, Tianjin 300350, China
2 Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
Light field imaging has shown significance in research fields for its high-temporal-resolution 3D imaging ability. However, in scenes of light field imaging through scattering, such as biological imaging in vivo and imaging in fog, the quality of 3D reconstruction will be severely reduced due to the scattering of the light field information. In this paper, we propose a deep learning-based method of scattering removal of light field imaging. In this method, a neural network, trained by simulation samples that are generated by light field imaging forward models with and without scattering, is utilized to remove the effect of scattering on light fields captured experimentally. With the deblurred light field and the scattering-free forward model, 3D reconstruction with high resolution and high contrast can be realized. We demonstrate the proposed method by using it to realize high-quality 3D reconstruction through a single scattering layer experimentally.
computational imaging light field imaging scattering imaging deep learning 
Chinese Optics Letters
2022, 20(4): 041101
作者单位
摘要
1 南开大学 现代光学研究所,天津300350
2 天津市微尺度光学信息技术科学重点实验室,天津300350
非接触式扩散光学层析成像(Diffuse Optical Tomography,DOT)技术和传统DOT技术相比具有更高的空间采集密度,系统中探测器的动态范围对实验结果有很大的影响。通过仿真和实验研究了探测器动态范围过小对重建结果的影响,并提出了一种利用深度学习拓展探测器动态范围的方法。在NIRFSAT软件包中设置不同的吸收散射的仿体及入射光场参数,批量生成训练样本,搭建全连接网络进行模型训练,并利用该模型修复仿真和光学实验条件下探测器获得的数据。实验数据修复及重建结果表明,该模型修复了低动态范围探测器获得的数据,将探测器的动态范围从256扩展到109。该方法能够有效地减小探测器动态范围过小带来的重建误差,为使用普通低动态范围探测器进行非接触式DOT提供了一种有效的技术解决方案。
扩散光学层析成像 深度学习 非接触系统 数据修复 diffuse optical tomography deep learning non-contact system data recovery 
光学 精密工程
2021, 29(11): 2529
作者单位
摘要
西北大学文化遗产学院, 文化遗产研究与保护技术教育部重点实验室, 陕西 西安 710127
颜料是彩绘文物的重要物质组成和艺术表现形式, 文物颜料的保护一直是文化遗产保护领域的热点和难点。 文物具有不可再生的特性, 文物颜料的原位、 无损、 微样本的准确分析是该类文物保护的重要工作。 随着各种微束技术的进步, 微区光谱分析技术以精准微区定位、 快速光谱扫描的工作方式, 在文物保护研究中具有独特的优势, 因而其应用得到了快速发展。 从颜料成分分析、 颜料降解褪色分析、 保护效果评价等方面探讨了微区X射线荧光光谱分析(μ-XRF)、 微区激光诱导击穿光谱分析(μ-LIBS)、 微区拉曼光谱分析(μ-Raman)、 微区红外光谱分析(μ-FTIR)、 微区X射线吸收近边结构光谱分析(μ-XANES)、 微区时间分辨光致发光光谱分析(μ-TRPL)、 微区褪色测试(μ-FT)等技术在彩绘文物颜料保护中的应用、 特点及技术难点, 并从消除测量干扰、 改进测量装置、 研发联合装置等方面展望了微区光谱技术的发展趋势。 其中, μ-XRF, μ-LIBS, μ-Raman和μ-FTIR是目前颜料成分分析常用的微区光谱分析技术, 而且μ-Raman和μ-FTIR在保护效果评价中应用广泛, μ-FTIR和μ-XRF还可用于颜料降解分析。 常用微区光谱技术联用并结合PCA分析和相关分析技术不仅可以鉴别文物颜料, 还能为文物产地、 文物断代及其真伪鉴别提供科学依据。 特别是μ-XANES, μ-TRPL和μ-FT等方法属于国际领先的文物颜料分析技术, 对文物颜料降解产物鉴别和分布可视化分析、 颜料的起源和历史、 颜料粒子迁移相关的降解现象、 颜料的耐光性等研究起着关键作用。 然而, 目前这些方法在国内文物保护领域应用很少。 因此, 该研究对于推动我国文物分析及文物保护的发展具有重要意义, 为文物颜料的鉴定、 保护和修复提供科学指导。
文物 颜料 保护 微区分析 光谱分析 Cultural relics Pigment Protection Micro-area analysis Spectral analysis 
光谱学与光谱分析
2021, 41(8): 2357

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!