李育亮 1,2齐金泉 1,2陈明亮 1,*邓陈进 1[ ... ]韩申生 1,2,5
作者单位
摘要
1 中国科学院上海光学精密机械研究所量子光学重点实验室,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
3 宇航智能控制技术国防科技重点实验室,北京 100089
4 自然资源部第二海洋研究所卫星海洋环境动力学国家重点实验室,浙江 杭州 310012
5 中国科学院大学杭州高等研究院物理与光电工程学院,浙江 杭州 310024
针对水下鬼成像重构质量下降、分辨率退化的问题,分析水体对散斑场传播的作用,提出在重构计算前将参考臂散斑进行校正的方法,以实现对物臂散斑场的退化补偿,进而提高水下鬼成像的成像质量。首先根据近似的S-S(Sahu-Shanmugam)散射相函数和Wells模型推导得到调制传递函数,用来描述水体对散斑的退化作用;然后对参考臂散斑场进行校正补偿,使参考臂散斑与物臂散斑具有相同的退化程度以恢复关联性;最后采用校正后的参考臂散斑进行图像重构。从理论上证明了所提方法在二阶关联计算中会使得图像退化加剧,而在基于伪逆的重构计算中则可以有效提高图像分辨率、改善图像质量。通过仿真和实验验证了理论模型的正确性,该研究为远距离水下目标鬼成像图像恢复提供了新的思路。
海洋光学 水下鬼成像 散斑场退化补偿 水体调制传递函数 二阶关联 伪逆 
光学学报
2024, 44(6): 0601003
作者单位
摘要
1 中国科学院空天信息创新研究院,北京 100194
2 中国科学院大学,北京 100049
3 华南理工大学 软件学院,广东 广州 510006
4 中国科学院上海光学精密机械研究所 量子光学重点实验室,上海 201800
激光雷达具有全天候工作、探测精度高、有效探测距离远、易获得三维信息等特点,但工作在远距离模式时,目标点云比较稀疏。当前便携条件下,基于深度学习的算法在激光雷达点云数据直接目标识别时,实时性和成功率尚不能达到远程监视实际工程的要求。针对实际工程中利用激光雷达检测运动目标进而实时引导高分辨率相机的需求,采用基于变化的检测方法,对远距离条件下激光雷达的运动目标检测方法进行了研究,利用点云数据的距离信息,给出三维单高斯模型和三维高斯混合模型检测动目标的过程和方法,提出了利用杂波图恒虚警率检测法处理点云数据的方法。实验表明,与二维图像动目标检测方法相比,三维单高斯模型法会很大程度提高检测准确性,降低虚警率,但仍然存在较高虚警率。为适应复杂三维场景,采用基于三维高斯混合模型的方法进一步降低了虚警率,但也降低了检测速度;而杂波图CFAR的方法具有很高的实时性,同时也具有较好的检测性能。
动目标检测 杂波图CFAR 激光雷达 三维高斯混合模型 moving target detection clutter map CFAR lidar 3D Gaussian mixture model 
红外与激光工程
2023, 52(4): 20220506
李宜泽 1,2邓陈进 1,2,*龚文林 1,2韩申生 1,2,3
作者单位
摘要
1 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 中国科学院大学杭州高等研究院, 浙江 杭州 310024
为提高浑浊介质下关联成像系统的成像质量,提出了一种基于直方图预处理的水下偏振差分关联成像方法。首先,通过偏振探测获取两个正交偏振方向的关联成像图像,然后,借助图像的灰度拉伸方法对重构图像进行预处理,最后,运用偏振差分算法得到目标图像。实验结果表明,所提方法可以改善浑浊水体下散射所造成的像质退化问题,增强图像细节,提高成像质量。利用重建图像的灰度直方图进行灰度统计分析表明,相比于现有偏振关联成像方法,该方法在水体介质浑浊浓度较高的情况下仍可以区分浑浊介质与目标。
成像系统 关联成像 偏振差分 灰度拉伸 散射介质 
光学学报
2021, 41(15): 1511004
龚文林 1,2,*†孙建锋 3†邓陈进 2卢智勇 3,**[ ... ]韩申生 2,***
作者单位
摘要
1 苏州大学光电科学与工程学院, 江苏 苏州 215006
2 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
3 中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800

基于相干探测的单像素激光成像雷达是一种结合光场的主动调制和光学相干探测、通过无空间分辨能力的单像元探测器便可以获取目标信息的计算成像技术,在高维信息获取和抗背景光干扰方面具有显著优势。本文简述了近年来发展起来的两种新型相干探测单像素激光成像雷达(合成孔径激光成像雷达和激光关联成像雷达)的基本原理和特点,介绍了近期取得的主要研究进展,并对其未来发展趋势进行了展望。

成像系统 计算成像 激光雷达 相干探测 图像重建 
激光与光电子学进展
2021, 58(10): 1011003
Author Affiliations
Abstract
1 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Wuhan Optics Valley Aerospace Sanjiang Laser Industrial Technology Research Institute Co., Ltd., Wuhan 430075, China
4 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
The influence of the sparsity of random speckle illumination on traditional ghost imaging (GI) and GI via sparsity constraint (GISC) in a noise environment is investigated. The experiments demonstrate that both GI and GISC obtain their best imaging quality when the sparsity of random speckle illumination is 0.5, which is also explained by some parameters such as detection of the signal to noise ratio and mutual coherence of the measurement matrix.
ghost imaging sparsity speckle illumination noise environment 
Chinese Optics Letters
2021, 19(4): 041103
作者单位
摘要
1 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
啁啾调幅激光关联成像是一种将关联成像原理与脉冲压缩方法相结合的新型成像方法,能够获取目标的方位、灰度、距离和速度信息,并且可以有效抑制背景噪声对成像质量的影响。目前初步建立了啁啾调幅激光关联成像理论模型和仿真验证,然而并未涉及光源调制性能对成像质量的影响。为此理论推导并数值分析了背景光存在条件下,光源调制性能对非相干外差探测啁啾调幅关联成像质量的影响。并且得到了起始调制深度、调制深度衰减系数、频率改变率,以及光电探测器带宽等参数与探测信噪比及成像质量的关系,该工作对啁啾调幅激光关联成像雷达系统的设计和性能评估具有指导意义。
成像系统 关联成像 啁啾调幅 背景光 调制性能受限 信噪比 
光学学报
2018, 38(10): 1011001
作者单位
摘要
中国科学院上海光学精密机械研究所 量子光学重点实验室,上海 201800
基于稀疏和冗余表象的鬼成像雷达(Ghost Image via Sparsity Constraints,GISC Lidar)是一种结合光场空间涨落特性和现代信息论的全新雷达成像体制,其成像视场和分辨率无关,由此可在探测时采用大视场凝视成像模式捕捉运动目标以对其进行高分辨率成像探测。与闪光照相雷达需要将目标的反射光信号成像分布在焦平面阵列光电探测器件上相比,GISC雷达只需要一个无空间分辨能力的单像素探测器接收目标场景的全部反射光信号,因此可以极大地提升系统的成像探测灵敏度。此外,GISC雷达在成像探测过程中可以利用图像的各种先验约束,从而突破奈奎斯特采样定理对采样次数的要求,大幅度提高图像的信息获取效率。文中将结合上海光机所将鬼成像技术应用于雷达探测的研究历程,介绍GISC雷达研究进展,并指出GISC雷达工程化实际应用中仍待解决的若干问题。
鬼成像 雷达成像 稀疏和冗余表象 压缩感知 信息论 ghost image imaging lidar sparsity and redundant constraints compressive sensing information theory 
红外与激光工程
2015, 44(9): 2547

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!