陈宇男 1,2,3,*杨瑞芳 1,3赵南京 1,3祝玮 1,2,3[ ... ]张瑞琦 1,2,3
作者单位
摘要
1 环境光学与技术重点实验室, 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
为了实现水体表面油膜厚度的快速测量分析, 以266 nm的激光作为探测系统的激发光源, 基于激光诱导水拉曼散射光谱检测技术, 通过获取不同种类不同厚度油膜存在下水拉曼光谱信息, 建立油膜厚度反演模型。采用高斯函数拟合法校正了荧光光谱对拉曼光谱的干扰。 然后根据水拉曼抑制法结合非线性最小二乘优化算法, 建立油膜厚度反演模型。结果表明: 对92#汽油、 0#柴油、 美孚机油20w-40、 壳牌润滑油10w-40、 采埃孚变速箱油AG6和原油油膜能探测到的油膜厚度范围为0.19~379.22 μm。 采用水拉曼光谱-油膜厚度反演模型预测油膜厚度的平均相对误差在8.14%~15.81%之间。 该方法能实现实验室条件下对微米级油膜的测量。
油膜厚度 拉曼光谱 快速检测 Oil film thickness Raman spectroscopy Rapid detection 
光谱学与光谱分析
2022, 42(12): 3954
黄尧 1,2,3赵南京 1,3,*孟德硕 1,3左兆陆 1,2,3[ ... ]谷艳红 4
作者单位
摘要
1 中国科学院 安徽光学精密机械研究所 环境光学与技术重点实验室,合肥 230031
2 中国科学技术大学,合肥 230026
3 安徽省环境光学监测技术重点实验室,合肥 230031
4 合肥学院 先进制造工程学院,合肥 230601
激光诱导荧光技术具有实时、快速的优势,并且无需对样品做预处理,是土壤多环芳烃定量分析检测的一种重要分析手段。然而土壤中多环芳烃种类繁多,激光诱导荧光光谱重叠严重,在无法进行化学分离的情况下实现土壤中多环芳烃的精确定量是难点之一。本文采用266 nm可移动激光诱导荧光系统获取了农田土壤多环芳烃的荧光光谱,研究了基于单变量线性回归、加权非负最小二乘多元线性回归和支持向量回归的多组分多环芳烃定量分析方法。结果表明:采用单变量线性回归,蒽和菲的相关系数均小于0.90,平均相对误差均大于20%;与单变量线性回归相比,加权非负最小二乘多元线性回归提高了两组分多环芳烃污染土壤中蒽和菲的预测精度,但在多组分多环芳烃污染土壤中的平均相对误差仍在20%以上。最后,采用GWO-DE优化的支持向量机回归模型分析了多组分多环芳烃污染土壤中的蒽和菲,蒽的平均相对误差由多元线性回归的23.1%下降至5.02%,菲的平均相对误差从20.8%下降到4.83%。该研究为提高土壤多组分多环芳烃激光诱导荧光定量分析的准确性提供了方法支撑。
polycyclic aromatic hydrocarbons laser-induced fluorescence spectra quantitative analysis 多环芳烃 激光诱导荧光光谱 定量分析 
中国光学
2020, 13(6): 1401
黄尧 1,2,3赵南京 1,3,*孟德硕 1,3左兆陆 1,2,3[ ... ]殷高方 1,3
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
多环芳烃是具有致突变、 致癌和致畸作用的一类持久性有机污染物, 广泛分布在大气、 水、 土壤等不同环境介质中。 多环芳烃一旦进入土壤便会长期存留于其中, 土壤成为环境中多环芳烃的重要储藏库和最终归宿。 土壤中的多环芳烃可以通过多种途径进入人体, 对人类健康造成威胁。 因此, 对土壤中多环芳烃的监测十分必要。 当前, 传统的土壤多环芳烃检测方法过程繁琐、 费时, 不利于污染场地多环芳烃的大范围快速检测, 而基于激光诱导荧光光谱技术的土壤多环芳烃检测法能够快速识别、 检测土壤中的有机污染物。 多环芳烃类物质具有易挥发, 可被紫外光降解等特性, 实验中紫外激光能量的选择至关重要, 本文利用实验室搭建的266 nm激光诱导荧光系统, 以蒽、 芘、 菲为研究对象, 探究不同激光能量下多环芳烃分解和荧光光谱的变化特性。 结果表明, 当激光的能量密度变化时, 荧光中心峰位置未发生偏移, 但蒽、 芘、 菲三种多环芳烃荧光峰处最大强度的相对标准偏差随激光能量密度的下降呈现出先下降后上升的趋势: 当能量密度为8.54 mJ·cm-2时, 三种物质在10次光谱测量结果的相对标准偏差均为最大, 蒽、 芘、 菲三种物质的荧光峰强度相对标准偏差分别在1.72, 1.00和1.47 mJ·cm-2的能量密度下达到最小值;蒽、 芘、 菲在100 s时, 分解率分别达到59.3%, 69.8%和63.6%, 在较高的能量下, 蒽、 芘、 菲三种物质发生了较快的分解, 芘相比于其他两种多环芳烃类物质更易发生光降解和热分解等作用, 荧光峰强度相对标准偏差也高于蒽与菲;蒽在激光能量密度为1.72 mJ·cm-2时, 10 s时的分解率已经接近于0, 100 s时分解率仅为12.8%, 荧光峰强度相对标准偏差达到最低, 当激光能量密度降至0.88 mJ·cm-2时, 蒽在100 s内的分解几乎可以忽略不计;对于芘而言, 当激光能量密度降至1.00 mJ·cm-2以下时, 分解作用基本趋于一致, 100 s时分解率在47.3%~47.4%;而对于菲而言, 当激光的能量密度低于1.47 mJ·cm-2后, 分解率不再随激光能量密度的降低而明显下降, 在100 s时的分解率在36.8%~38.6%;在低能量密度土壤中芘与菲下仍发生分解作用。
激光诱导荧光 土壤 多环芳烃 能量密度 Laser-induced fluorescence Soil Polycyclic aromatic hydrocarbons Energy density 
光谱学与光谱分析
2020, 40(7): 2319
黄尧 1,2,3赵南京 1,3,*孟德硕 1,3左兆陆 1,2,3[ ... ]陈晓伟 1,2,3
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
采用荧光分光光度计直接获取土壤中多环芳烃(PAHs)的三维荧光光谱,并利用非平滑非负矩阵分解(nsNMF)对其进行解析,结果表明,非负矩阵分解(NMF)能够从混叠光谱中提取出单一多环芳烃的荧光光谱信号。在随机初始值下,nsNMF优于基于交替式非负最小二乘的标准非负矩阵分解(NMF/ANLS),解析光谱与参考光谱的相似系数均在0.824以上。特别是在农田土壤中,菲和蒽的解析光谱与标准参考光谱的相似系数分别由0.758、0.845(NMF/ANLS)提高到0.907、0.913(nsNMF)。三维荧光光谱结合nsNMF能够实现土壤多环芳烃组分的快速识别。
光谱学 三维荧光光谱 非负矩阵分解 土壤 多环芳烃 组分识别 
中国激光
2020, 47(10): 1011002
陈宇男 1,2,3,*杨瑞芳 1,3赵南京 1,3祝玮 1,2,3[ ... ]陈晓伟 1,2,3
作者单位
摘要
1 中国科学院环境光学与技术重点实验室, 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
海上溢油油膜厚度的定量检测是实现溢油量准确估计的重要依据和手段, 为制定石油污染应急响应提供了基础数据。 本文基于激光诱导荧光(LIF)的方法以柴油(0# diesel)、 机油(Mobil motor oil 20w-40)、 润滑油(Shell Helix 15w-40, Shell Helix 10w-40, Shell Helix 5w-40)为研究对象, 重点分析了油膜厚度-荧光发射强度关系, 检出限以及油膜厚度在不同水体中定量检测的准确性。 结果表明: 0#柴油和美孚机油20w-60的荧光光谱特征与润滑油的光谱特征有明显不同, 柴油的荧光峰位于326 nm其FWHM为60 nm, 美孚机油20w-60则具有三个荧光峰分别位于360 nm/375 nm/390 nm其FWHM为100nm。 三种润滑油(壳牌润滑油15w-40、 壳牌润滑油10w-40、 壳牌润滑油5w-40)的荧光光谱重叠明显, 荧光峰分别位于334, 344和343 nm且FWHM分别为75, 45和50 nm。 5种油膜的荧光强度均随油膜厚度的增加而增加, 校正曲线的相关性分别为0.997 8, 0.997 9, 0.996 4, 0.997 8和0.996 0, 均具有较好的相关性, 5种油膜检出限分别为0.03, 0.02, 0.02, 0.03和0.05 μm, 0#柴油在合成海水A和B中的平均相对误差为5.04%和8.73%, 平均相对标准偏差分别为4.37%和8.36%, 美孚机油20w-40在合成海水A和B中的平均相对误差为7.99%和9.97%, 平均相对标准偏差为4.78%和6.23%。 壳牌润滑油15w-40在合成海水A和B中的平均相对误差为8.54%和13.69%, 相对标准偏差为5.05%和9.08%。 壳牌润滑油10w-40在合成海水A和B中的平均相对误差为6.33%和12.38%, 平均相对标准偏差为2.85%和7.92%。 壳牌润滑油5w-40在合成海水A和B中的平均相对误差为4.28%和11.57%, 平均相对标准偏差为3.56%和7.73%。 可见5种油膜在不同水体中定量检测的平均相对误差均小于14%, 平均相对标准偏差均小于10%, 研究结果可以实现对薄油膜的测量, 为海上油膜厚度的在线监测提供了技术手段。
激光诱导荧光 油膜厚度 在线监测 Laser-induced fluorescence Oil slick thickness Fluorescence spectra Online monitoring 
光谱学与光谱分析
2019, 39(11): 3646
吴文涛 1,*陈宇男 1,2,3肖雪 2,3杨瑞芳 2,3赵南京 2,3
作者单位
摘要
1 合肥工业大学资源与环境工程学院, 安徽 合肥 230009
2 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
掌握不同环境因素下的光谱发射特性是农药准确测量的前提。 以多菌灵、 西维因、 麦穗宁三种杂环农药为研究对象, 研究了农药在不同pH值和常见阴、 阳离子条件下的三维荧光光谱发射特性, 并初步分析了Fe3+和Cu2+对三种农药的荧光猝灭机制。 结果表明, 多菌灵和麦穗宁均具有两个荧光峰, 西维因仅有一个荧光区域, 三种农药的主要荧光峰分别位于λex/λem=280/300, 310/340和280/335 nm, 多菌灵和麦穗宁的次荧光峰Peak B分别位于λex/λem=245/305 nm, λex/λem=250/340 nm; 多菌灵与麦穗宁随pH值变化表现为相似的荧光发射特征, 在酸性/碱性降低时, 荧光强度增大; 酸性条件下西维因的荧光发射强度无明显变化, 但在碱性条件下, 随pH值的减小荧光强度不断增强; 三种农药在pH值6.16~7.4范围内均可获得较好的荧光发射特征。 水中CO2-3, SO2-4, NO-3, Cl-, HPO2-4, HCO-3, Mg2+, Zn2+, NH+4, Na+, Ca2+和K+等12种常见离子对多菌灵, 西维因和麦穗宁的荧光发射特性无明显影响。 Fe3+与Cu2+离子通过静态荧光猝灭反应, 影响三种农药的荧光发射强度。 随着离子浓度的增加荧光强度不断降低, 在实际测量中, 需重点考虑Fe3+和Cu2+对测量结果的影响。 该研究结果为水体杂环农药的准确测量提供了基础数据。
杂环农药 三维荧光 环境因素 荧光特性 Heterocyclic pesticides Three-dimensional fluorescence Environmental factors Fluorescence properties 
光谱学与光谱分析
2017, 37(3): 788

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!