叶森 1龙云 2王如泉 2曹强 1,*[ ... ]杜渐 3
作者单位
摘要
1 北京理工大学 机械与车辆学院, 北京 100081
2 中国科学院 物理研究所, 北京 100190
3 北京仿真中心 航天系统仿真国家重点实验室, 北京 100854
为了降低超稳光学腔的振动敏感度, 在综合考虑振动所导致的腔镜位移及转动后, 定义了一个新的表征腔体振动敏感度的参量。采用有限元数值分析方法, 用所定义的单一参量优化了一个典型的立式超稳光学腔。优化过程考虑了腔体端面直径、支撑孔位置和深度等关键几何参量。结果表明, 优化后的腔体结构和支撑方式可以明显降低超稳腔对振动的敏感度, 腔体稳定性比优化前提高1.5倍。该优化方法操作性强, 能够有效提升超稳腔仿真和设计的效率。
激光光学 超稳光学腔 有限元分析 超精密测量 laser optics ultra-stable optical cavity finite element analysis ultra-precision measurement 
激光技术
2016, 40(6): 871
Author Affiliations
Abstract
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
2 Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
A frequency-stabilized 556-nm laser is an essential tool for experimental studies associated with 1S0-3P1 intercombination transition of ytterbium (Yb) atoms. A 556-nm laser light using a single-pass second harmonic generation (SHG) is obtained in a periodically poled MgO:LiNbO3 (PPLN) crystal pumped by a fiber laser at 1111.6 nm. A robust frequency stabilization method which facilitates the control of laser frequency with an accuracy better than the natural linewidth (187 kHz) of the intercombination line is developed. The short-term frequency jitter is reduced to less than 100 kHz by locking the laser to a home-made reference cavity. A slow frequency drift is sensed by the 556-nm fluorescence signal of an Yb atomic beam excited by one probe beam and is reduced to less than 50-kHz by a computer-controlled servo system. The laser can be stably locked for more than 5 h. This frequency stabilization method can be extended to other alkaline-earth-like atoms with similar weak intercombination lines.
镱原子 激光稳频 互组跃迁 类碱土金属原子 140.3425 Laser stabilization 140.3515 Lasers, frequency doubled 300.6400 Spectroscopy, molecular beam 140.7010 Laser trapping 
Chinese Optics Letters
2011, 9(4): 041406
Author Affiliations
Abstract
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
2 Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
We build a Zeeman slower with consecutive coils and use it to load an Yb magneto-optical trap (MOTs). Cooling efficiency is measured by the fluorescence intensity of the atomic cloud trapped by the MOT. An optimized magnetic field profile can acquire the maximum cooling efficiency, corresponding to a good compromise between the smaller magnetic field mismatch and the high capture velocity. Our studies provide useful information on how the performance of the Zeeman slower can be improved.
塞曼减速器 原子冷却 磁光阱 镱原子 020.3320 Laser cooling 020.7010 Laser trapping 020.7490 Zeeman effect 
Chinese Optics Letters
2011, 9(1): 010201

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!