作者单位
摘要
1 冶金工程与资源综合利用安徽省重点实验室(安徽工业大学), 安徽 马鞍山 243002 冶金工程与资源综合利用安徽省重点实验室(安徽工业大学), 安徽 马鞍山 243002 School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
2 冶金工程与资源综合利用安徽省重点实验室(安徽工业大学), 安徽 马鞍山 243002
3 School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
4 冶金工程与资源综合利用安徽省重点实验室(安徽工业大学), 安徽 马鞍山 243002 冶金工程与资源综合利用安徽省重点实验室(安徽工业大学)
5 安徽工业大学建筑工程学院, 安徽 马鞍山 243032
水泥中的硫酸盐含量过高会带来后期体积膨胀的风险。 采用纳米TiO2和纳米SiO2对含有CaSO3·0.5H2O的半干法烧结烟气脱硫灰改性, 以纳米改性半干法烧结烟气脱硫灰为混合材制备固废型纳米高硫水泥, 解决混合材中CaSO3·0.5H2O含量高带来的耐久性不良问题。 根据固废型纳米高硫水泥的安定性、 标准稠度用水量, 凝结时间以及抗压强度等性能的发展变化规律, 确定了各组分的掺量配比和制备参数。 采用LPSA分析了原材料的粒径分布区间, 采用接触角测量仪分析了硬化浆体的浸润性能, 采用XRD分析了原料及硬化浆体的矿物成分, 采用FTIR分析了原料及硬化浆体的组织结构的变化规律, 采用SEM分析了原料及硬化浆体的微观形貌。 结果表明, 半干法烧结烟气脱硫灰的粒径分布区间为0.31~127.38 μm比水泥颗粒粒径分布区间更宽、 粒度更细, 能够优化水泥的级配范围。 半干法烧结烟气脱硫灰的加入对水泥水化起到一定的缓凝作用, 延长了凝结时间, 掺量较大会带来同龄期硬化浆体抗压强度的降低。 纳米SiO2与纳米TiO2的加入能够降低高硫水泥体系的标准稠度用水量, 提高其抗压强度。 3 Wt%的纳米TiO2与2 Wt%的纳米SiO2协同改性能够有效稳定半干法烧结烟气脱硫灰中的CaSO3·0.5H2O, 进一步激发半干法烧结烟气脱硫灰的潜在活性, 提高水泥硬化浆体的力学性能。 改性后固废型纳米高硫水泥28 d的抗压强度为64.72 MPa比未改性的高硫水泥提高了83%, 比纯水泥提高了16%。 纳米改性后, 润湿边角增大向疏水转变, 有利于耐久性的提高; XRD分析结果显示水化产物中类AFm’含量很低, 降低了膨胀的风险; FTIR分析结果显示水化产物中Ca(OH)2中含有的—OH的伸缩振动峰增强, 进一步提高了硬化浆体的抗化学侵蚀能力; SEM分析结果显示水化产物质地均匀, 组织缺陷少。 纳米TiO2与纳米SiO2协同改性半干法烧结烟气脱硫灰可以稳定其中含有余有的硫酸盐、 亚硫酸盐, 制备出高性能固废型纳米高硫水泥, 有利于降碳减碳, 节能环保。
半干法脱硫灰 胶凝材料 纳米改性 亚硫酸盐 微观结构 Semi-dry flue gas desulfurization Cementing material Nano-modification Sulfite Microstructure 
光谱学与光谱分析
2023, 43(6): 1974
作者单位
摘要
1 安徽工业大学冶金工程学院, 安徽 马鞍山 243032
2 安徽工业大学, 冶金减排与资源综合利用教育部重点试验室, 安徽 马鞍山 243032
高炉渣作为钢铁行业的一类大宗固废, 其高附加值利用一直是相关行业的研究重点, 对钢铁行业的绿色发展具有重要意义。以高炉渣为研究对象, 综述了近5年来其作为光催化材料用于污水处理领域的研究进展。介绍了高炉渣的基本情况, 包括其形成组成、作光催化材料的可行性、国内外综合利用现状和综合利用中存在的问题; 简要阐明光催化技术的发展现状, 内容涉及其作用机理、性能改善方式和发展趋势; 说明高炉渣作光催化材料净化废水的研究进展, 并就现有文献对其光催化效率影响因素和提高方式进行了讨论; 最后对高炉渣基光催化材料的处理方式和应用方式进行了归纳总结, 并对其持续性的资源化利用进行了展望。
高炉渣 高钛渣 光催化 降解 污染物 blast furnace slag high titanium slag photocatalytic degradation pollutants 
硅酸盐学报
2023, 51(1): 270
作者单位
摘要
1 安徽工业大学建筑工程学院, 安徽 马鞍山 243032
2 冶金减排与资源综合利用教育部重点实验室(安徽工业大学), 安徽 马鞍山 243002
3 首钢京唐钢铁联合有限责任公司, 河北 唐山 063200
4 马鞍山钢铁股份有限公司, 安徽 马鞍山 243003
5 江苏华安橡胶科技有限公司, 江苏 宿迁 223600
钢渣是冶金工业中产生的主要固体废弃物, 其产量约为每年粗钢产量的15%~20%。 由于技术的局限, 导致我国钢渣利用率较低, 仅为年钢渣产量的10%, 同时加之管理制度的不健全, 导致钢渣大量露天堆放, 对土地资源、 地下水源, 以及空气质量形成严重影响。 面对上述问题, 以热闷渣、 电炉渣和风淬渣研发改性钢渣微粉, 并且将改性钢渣微粉与复合橡胶进行复合制备改性钢渣/橡胶复合材料。 依据《硫化橡胶或热塑性橡胶热空气加速老化和耐热试验》(GB/T3512—2014)对改性钢渣/橡胶复合材料进行热氧老化处理, 采用平衡溶胀法测定改性钢渣/橡胶复合材料的交联密度, 扫描电子显微镜(SEM)、 热重分析仪(TGA)和傅里叶转换红外光谱仪(FTIR)分别测试其微观形貌、 失重率和结构组成, 从微观层面阐述改性钢渣/橡胶复合材料的热氧老化机理。 结果表明在热氧老化前期老化作用在改性钢渣/橡胶复合材料表面, 其内部以交联键形成反应为主; 在热氧老化中期老化作用已经作用改性钢渣/橡胶复合材料内部, 造成交联键断裂反应速度高于交联键形成反应速度, 形成大量断裂交联键; 在热氧老化后期由于改性钢渣/橡胶复合材料内部已经存在大量断裂交联键, 导致主链及交联键断裂速度降低, 交联键形成反应占优势。 改性钢渣微粉以热闷渣(SiO2含量高)为原材料, 有利于形成聚合物大分子链贯穿炭黑网络的结构, 提高综合性能, 尤其是物理机械性与滞后性; 以电炉渣、 风淬渣(Fe2O3含量高)制备改性钢渣微粉, 有利于热传导性能的改善, 不仅提高改性钢渣/橡胶复合材料的耐热性, 而且提高其硬度与脆性。 热氧老化过程中改性钢渣/橡胶复合材料内部在橡胶分子链α-H上发生了不同程度的氧化反应, 并在橡胶分子链周围生成了羟基、 羧基和醇类化合物, 双键烯氢含量降低。
改性钢渣 橡胶复合材料 热氧老化 Modified steel slag Rubber composites Thermal oxidative aging SEM SEM FTIR FTIR 
光谱学与光谱分析
2022, 42(12): 3906
张浩 1,2,3李海丽 1龙红明 2,3刘自民 4[ ... ]郑伟成 3
作者单位
摘要
1 安徽工业大学建筑工程学院, 安徽 马鞍山 243032
2 冶金减排与资源综合利用教育部重点实验室(安徽工业大学), 安徽 马鞍山 243002
3 安徽工业大学冶金工程学院, 安徽 马鞍山 243032
4 马鞍山钢铁股份有限公司技术中心, 安徽 马鞍山 243003
钢渣作为炼钢过程中产生的固体废弃物, 矿渣作为高炉炼铁过程中的副产品, 其存在难以利用与附加值的问题。 面对上述问题, 利用钢渣与矿渣开发一种价格低廉的复合橡胶填料用于橡胶领域。 采用磁选热闷渣、 未磁选热闷渣、 矿粉和助磨-改性复合剂制备改性钢渣-矿粉复合橡胶填料, 并且用于复合橡胶体系。 研究磁选热闷渣用量、 未磁选热闷渣用量、 矿粉用量和助磨-改性复合剂用量对改性钢渣-矿粉基橡胶复合材料性能的影响, 并且分析其影响机理。 结果表明, 以磁选热闷渣用量150 g、 未磁选热闷渣用量150 g、 矿粉用量150 g和助磨-改性复合剂用量9 g制备的改性钢渣-矿粉复合橡胶填料补强-阻燃性能最优。 按改性钢渣-矿粉复合橡胶填料∶炭黑质量比20∶30制备的改性钢渣-矿粉基橡胶复合材料, 其拉伸强度为21.83 MPa、 撕裂强度为46.23 kN·m-1、 邵尔A硬度为62、 磨耗量为159 mm3、 极限氧指数为19.8%与燃尽时间为187 s。 助磨-改性复合剂不仅降低粒径尺寸、 提高粒径均匀性, 而且改善钢渣-矿粉复合橡胶填料的表面结构与性质, 有利于改性钢渣-矿粉复合橡胶填料在复合橡胶体系中均匀分散, 提高相容性。 钢渣与矿粉在助磨-改性复合剂的作用下发生化学反应, 改变了钢渣与矿粉的物相组成, 提高补强性能与阻燃性能。
钢渣 矿粉 补强性能 阻燃性能 橡胶复合材料 Steel slag Mineral powder Reinforcing properties Flame retardant properties Rubber composites 
光谱学与光谱分析
2021, 41(4): 1138
作者单位
摘要
二噁英是一类含氯挥发性有机污染物, 具有环境持久性、 生物蓄积性和长期残留性等特性, 可造成致畸、 致癌和致突变等危害。 铁矿烧结过程中含氯前驱物在碱性环境下通过Ullman反应或经飞灰中某些催化性成分催化生成二噁英; 碳、 氢、 氧和氯等元素可通过基元反应“从头合成”(de novo)二噁英, 是二噁英最主要的排放源之一。 物理吸附技术仅能实现污染物由气相向固相转移, 加重了飞灰处理负担, 并存在特定温度条件下(250~350 ℃)二噁英再生风险。 催化降解技术能彻底矿化有机污染物, 生成CO2, H2O和HCl/Cl2, 是一种避免二次污染高效节能、 成本较低的方法。 但由于传统催化剂活性温度区间较高, 无法达到烧结烟气末端温度。 选择合适的催化剂, 提高催化剂低温降解活性, 能实现低温、 高效催化降解烧结烟气中有机污染物的目标。 过渡金属Ce具有稀土金属的4f轨道配位效应和路易斯酸活性位点, 对有机污染物C—H和C—Cl键活化起到至关重要的作用, 掺杂过渡金属、 调整活性组分比例可进一步提高铈基催化剂的抗中毒性能和降解活性。 因此, 本文采用溶胶凝胶法制备Ce-V-Ti复合催化剂, 以氯苯为二噁英模型分子, 研究了不同活性组分比例对铈基催化剂降解烧结烟气中二噁英活性影响。 利用X射线衍射仪、 比表面积及孔径测定仪和拉曼光谱仪对催化剂进行表征, 研究Ce-V-Ti催化剂的相组成、 比表面积和分子结构, 并推测铈基催化剂的降解机理。 结果表明, 在实验室模拟烧结烟气气氛下, 反应条件为GHSV=30 000 h-1、 20%O2和100 ppm CB, 当Ce质量分数为15%、 V质量分数为2.5%时, Ce-V-Ti催化降解氯苯活性最高, 150 ℃能达到约60%转换率, 300 ℃能实现95%降解率。 催化剂载体与活性组分之间化学交互作用, 影响催化剂的降解活性。 通过光谱学分析发现, Ce-V-Ti催化剂XRD图谱主要为锐钛矿相的TiO2, 比表面积为95.53 m2·g-1, 孔容0.29 cm3·g-1, 孔径6.5 nm。 表面官能团主要为C—H基团和H—O官能团。 引入V作为Ce-Ti催化剂助剂, 促进了Ce元素固溶, 增加了催化剂表面氧空位, 有利于提升催化剂降解活性。 通过对催化剂机理分析, 认为反应物首先通过发生亲核取代而垂直吸附于催化剂表面, 再被活性组分Ce活化, 活化后氯苯分子被表面活性氧分解矿化。 同时, 过渡金属V的低价态氧化物发生氧化反应, 促进Ce的还原反应。
催化氧化 二噁英 Ce-V-Ti催化剂 光谱学 烧结烟气 Catalytic combustion Dioxins Ce-V-Ti catalysts Spectral analysis Iron ore sintering flue gas 
光谱学与光谱分析
2021, 41(1): 327
张浩 1,2,3张磊 3龙红明 1,2
作者单位
摘要
1 冶金减排与资源综合利用教育部重点实验室(安徽工业大学), 安徽 马鞍山 243002
2 安徽工业大学冶金工程学院, 安徽 马鞍山 243032
3 安徽工业大学建筑工程学院, 安徽 马鞍山 243032
利用木材、 竹子、 等其他生物资源制备具有发达多孔结构与丰富比表面积的活性炭, 存在生产成本较高、 不利于生态环境的可持续发展、 使用寿命短和失效后容易造成室内环境二次污染的问题。 冶金固体废弃物与生物质废弃物是工业生产与农业生产主要的副产品, 因利用难度大、 附加值低且成本高, 导致大量堆放和填埋, 不仅造成生态环境的污染, 而且极大的浪费潜在资源。 面对上述问题, 利用冶金固体废弃物与生物质废弃物开发一种价格低廉且性能优越的生态活性炭, 既是冶金固体废弃物与生物质废弃物的高附加值利用与资源可持续发展的重要途径之一, 也是大幅降低改性活性炭生产成本与提高经济效益的重要途径之一。 以核桃壳与电炉渣为研究对象, 利用电炉渣中含有的金属氧化物对生物质废弃物进行改性处理制备用于甲醛降解的生态活性炭, 依据《室内装饰装修材料人造板及其制品中甲醛释放限量》(GB18580—2017)对生态活性炭性能进行测试。 利用X-射线光电子能谱(XPS)对元素含量进行测试与分析, X-射线荧光光谱仪(XRF)对化学成分进行测试与分析, 傅里叶变换红外光谱仪(FTIR)对结构组成进行测试与分析, X-射线衍射仪(XRD)对矿物组成进行测试与分析, 扫描电子显微镜(SEM)对微观结构进行测试与分析, 激光粒度仪(LPSA)对粒度分布进行测试与分析和比表面积及孔径测定仪(BET)对孔结构进行测试与分析, 以揭示核桃壳与电炉渣制备生态活性炭的机理, 以及生态活性炭对甲醛的降解机理。 结果表明: 核桃壳超微粉与电炉渣超微粉进行复合制备具有良好降解甲醛性能的生态活性炭, 不仅实现了冶金固体废弃物与生物质废弃物的高附加值的利用, 而且提出了“以废治危”的新室内空气甲醛治理理念。 电炉渣超微粉较好的被包裹于生态活性炭层状结构中, 提高生态活性炭的粉化率, 形成粒径较小的颗粒, 有利于提高生态活性炭与甲醛的降解作用面积。 电炉渣超微粉中含有Fe元素、 Mn元素与Ti元素, Fe元素具有磁性促使大量甲醛在生物质活性炭孔结构表面形成富集, Mn元素与Ti元素对已经富集的甲醛进行催化降解, 实现吸附降解与催化降解的协同作用。
钢渣 核桃壳 生态活性炭 光谱学分析 甲醛 Steel slag Walnut shell Ecological activated carbon Spectroscopic analysis Formaldehyde 
光谱学与光谱分析
2020, 40(3): 861
张浩 1,2,3张欣雨 3龙红明 1,2,3
作者单位
摘要
1 安徽工业大学冶金工程学院, 安徽 马鞍山 243032
2 冶金减排与资源综合利用教育部重点实验室(安徽工业大学), 安徽 马鞍山 243002
3 安徽工业大学建筑工程学院, 安徽 马鞍山 243032
以钢渣微粉作为研究对象, 采用磷酸溶液改性钢渣微粉制备弱酸改性钢渣微粉, 利用X射线衍射仪、 比表面积及孔径测定仪和环境扫描电镜对弱酸改性钢渣微粉进行表征, 研究弱酸改性钢渣微粉的组成成分、 孔结构、 微观结构和元素组成。 结果表明, 适量磷酸溶液可以有效去除钢渣微粉中f-CaO, 提高弱酸改性钢渣微粉的孔结构。 过量磷酸溶液与钢渣微粉中Ca(OH)2发生反应, 导致弱酸改性钢渣微粉结构坍塌, 整体呈现蓬松状。 80 g钢渣微粉, 1.6~3.2 mL磷酸溶液时, 弱酸改性钢渣微粉具有较低的f-CaO含量与良好的孔结构。 为进一步拓展钢渣的利用途径提供一定的技术支持和理论基础。
钢渣微粉 磷酸溶液 孔结构 光谱学 Steel slag powder Phosphate solution f-CaO f-CaO Pore structure Spectroscopic 
光谱学与光谱分析
2018, 38(11): 3502
张浩 1,2,3王林 4龙红明 2,3,5
作者单位
摘要
1 安徽工业大学建筑工程学院, 安徽 马鞍山 243032
2 冶金减排与资源综合利用教育部重点实验室(安徽工业大学), 安徽 马鞍山 243002
3 安徽工业大学冶金工程学院, 安徽 马鞍山 243032
4 上海宝钢新型建材科技有限公司, 上海 201900
5 钢铁冶金新技术国家重点实验室(北京科技大学), 北京 100083
以Na2SiO3、 NaOH和Ca(OH)2制备碱溶液, 然后利用碱溶液对钢渣进行活化处理。 分别研究Na2SiO3用量、 NaOH用量和Ca(OH)2用量对碱钢渣胶凝材料的力学性能影响, 获得最优力学性能的碱钢渣胶凝材料。 采用XRD, FTIR和SEM对最优力学性能的碱钢渣胶凝材料进行表征。 结果表明, 当NaOH用量为4.50 g、 Na2SiO3用量为11.25 g和Ca(OH)2用量为6.75 g时, 碱钢渣胶凝材料的力学性能最优。 Na2SiO3对碱钢渣胶凝材料的7 d抗压强度影响显著, NaOH对碱钢渣胶凝材料的3 d抗压强度影响显著, Ca(OH)2对碱钢渣胶凝材料的28 d抗压强度影响显著。 Na2SiO3, NaOH和Ca(OH)2碱性物质的加入促使钢渣形成稳定的C-S-H凝胶与沸石类相。
X射线衍射(XRD) 傅里叶变换红外光谱(FTIR) 碱钢渣胶凝材料 钢渣 复合激发机理 XRD FTIR Alkali steel slag cementations materials Steel slag Composite activating mechanism 
光谱学与光谱分析
2018, 38(7): 2302

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!