Chenglin Du 1,2Ran Ye 1,2,*Xiaolong Cai 1,2,**Xiangyang Duan 1,2[ ... ]Minhan Mi 3
Author Affiliations
Abstract
1 State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen 518055, China
2 Wireless Product Planning Department, ZTE Corporation, Shenzhen 518055, China
3 School of Microelectronics, Xidian University, Xi’an 710071, China
The GaN HEMT is a potential candidate for RF applications due to the high frequency and large power handling capability. To ensure the quality of the communication signal, linearity is a key parameter during the system design. However, the GaN HEMT usually suffers from the nonlinearity problems induced by the nonlinear parasitic capacitance, transconductance, channel transconductance etc. Among them, the transconductance reduction is the main contributor for the nonlinearity and is mostly attributed to the scattering effect, the increasing resistance of access region, the self-heating effect and the trapping effects. Based on the mechanisms, device-level improvement methods of transconductance including the trapping suppression, the nanowire channel, the graded channel, the double channel, the transconductance compensation and the new material structures have been proposed recently. The features of each method are reviewed and compared to provide an overview perspective on the linearity of the GaN HEMT at the device level.
GaN HEMT linearity improvement transconductance reduction transconductance compensation nanowire channel graded channel 
Journal of Semiconductors
2023, 44(12): 121801
作者单位
摘要
西南交通大学 微电子研究所, 成都 611756
为了进一步提升P-GaN 栅HEMT器件的阈值电压和击穿电压, 提出了一种具有P-GaN栅结合混合掺杂帽层结构的氮化镓高电子迁移率晶体管(HEMT)。新器件利用混合掺杂帽层结构, 调节整体极化效应, 可以进一步耗尽混合帽层下方沟道区域的二维电子气, 提升阈值电压。在反向阻断状态下, 混合帽层可以调节栅极右侧电场分布, 改善栅边电场集中现象, 提高器件的击穿电压。利用Sentaurus TCAD进行仿真, 对比普通P-GaN栅增强型器件, 结果显示, 新型结构器件击穿电压由593 V提升至733 V, 增幅达24%, 阈值电压由0509 V提升至1323 V。
氮化镓高电子迁移率晶体管 增强型 击穿电压 混合帽层 GaN HEMT enhancement-mode breakdown voltage hybrid cap layer 
微电子学
2023, 53(4): 723
作者单位
摘要
中国电子科技集团公司第五十八研究所无锡 214035
氮化镓功率器件凭借优异性能被抗辐照应用领域重点关注,为探究氮化镓功率器件抗γ射线辐照损伤能力,明确其辐射效应退化机制,针对增强型AlGaN/GaN高电子迁移率晶体管(High Electron Mobility Transistor,HEMT)器件开展不同偏置(开态、关态和零偏置)条件下的γ射线辐照与不同温度的退火试验,分析器件电学性能同偏置条件和退火环境之间的响应规律。结果表明:随着γ射线辐照剂量的增加,器件阈值电压负漂,跨导峰值、饱和漏电流和反向栅泄漏电流逐渐增加,且在开态偏置条件下器件的电学特性退化更加严重;此外,高温环境下退火会导致器件的电学性能恢复更加明显。分析认为γ射线辐照剂量越高,产生的辐照缺陷越多,同时栅极偏压会降低辐照引发的电子-空穴对的初始复合率,逃脱初始复合的空穴数量增多,进一步增加了缺陷电荷的浓度;而高温环境会导致器件发生隧穿退火或热激发退火,有助于器件性能恢复。氮化镓功率器件的辐照损伤过程及机理研究,为其空间环境应用的评估验证提供了数据支撑。
增强型AlGaN/GaN HEMT器件 总剂量效应 偏置条件 电学性能 退火恢复 Enhanced AlGaN/GaN HEMT devices Total ionizing dose effect Bias conditions Electrical property Annealing recovery 
核技术
2023, 46(11): 110502
作者单位
摘要
河南科技大学 电气工程学院, 河南 洛阳 471023
为了解决晶体管寄生参数对逆F(F-1)类功率放大器效率的影响,采用了一种新型的输出谐波控制结构。首先,设计二次和三次谐波控制电路,同时将直流偏置电路加入二次谐波控制电路,降低了电路设计的复杂度。其次,为了解决寄生参数对F-1类功放本征漏极端阻抗的影响,采用一段串行微带线进行寄生补偿。最后,通过微带线和电容进行基波和负载之间的匹配。为验证方法的有效性,采用0.25 μm氮化镓高电子迁移率晶体管(GaN HEMT)工艺,设计了一款工作在5.7 GHz~6.3 GHz的F-1类微波集成电路功放。版图后仿真结果显示,F-1类功放的漏极效率DE为57.2%~62.3%,功率附加效率PAE为51.8%~57.4%,饱和输出功率为39.0 dBm~40.4 dBm,增益为9.0 dBm~10.4 dBm。版图面积为3.2×1.7 mm2。
逆F类 功率附加效率 inverse class F (F-1) GaN HEMT GaN HEMT MMIC MMIC PAE 
微电子学
2022, 52(6): 961
作者单位
摘要
1 中国科学院半导体研究所,北京 100083
2 中国科学院大学,北京 100049
3 哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
为实现纳秒级的输出光脉宽,使用GaN HEMT作为激光器放电回路的开关管。由于GaN HMET的栅极总电荷小,提出使用小尺寸的GaN HEMT建立驱动电路的输入级,响应控制信号,控制放电回路开关管。搭建电路驱动860 nm激光器,并进行测试。放电回路电源电压为12 V,测试结果显示,最大输出光脉宽8.8 ns对应大于8 W的峰值功率,输出最小光脉宽为4 ns。为实现更大的脉宽可调范围,设计另一款电路并测试。该电路实现输出光脉宽大于8.4 ns可调,在电源电压20 V、输入信号脉宽100 ns的条件下,输出光峰值功率可达46 W。电路尺寸分别为10 mm×6 mm和13 mm×11 mm,为实现进一步小型化,对设计的电路提出了集成方法。提出的电路结构简单、容易实现集成且成本低,为窄脉冲激光器驱动电路的设计提供了新的思路。
半导体激光器 驱动电路 GaN HEMT 窄脉冲 小型化 semiconductor laser driver circuit GaN HEMT narrow pulse miniaturization 
红外与激光工程
2022, 51(10): 20220036
吕航航 1,2,*曹艳荣 1,2马毛旦 1,2张龙涛 1,2[ ... ]马晓华 3
作者单位
摘要
1 西安电子科技大学 a.机电工程学院
2 b.宽带隙半导体技术国家重点学科实验室,陕西西安 710071
3 西安电子科技大学 b.宽带隙半导体技术国家重点学科实验室,陕西西安 710071
在高频、大功率、高温、高压等领域,氮化镓高电子迁移率晶体管(HEMT)器件因其优异的耐辐射性能而被广泛地应用于卫星、太空探测、核反应堆等领域。尽管从理论和一些试验研究中可以得知,氮化镓材料具有良好的耐辐射特性,但在实际应用中,因其制作工艺及结构等因素的影响,氮化镓 HEMT器件的耐辐射特性受到了很大的影响和挑战。本文介绍了氮化镓 HEMT器件几种辐射效应,并对氮化镓 HEMT器件辐射的研究进行了综述。
氮化镓 HEMT器件 γ射线辐射 质子辐射 中子辐射 电子辐射 GaN HEMT devices Gamma irradiation proton irradiation neutron irradiation electron irradiation 
太赫兹科学与电子信息学报
2022, 20(6): 535
李姚 1,2,3郑子轩 1,3蒲红斌 1,3
作者单位
摘要
1 西安理工大学电子工程系,西安 710048
2 西安电子科技大学宽带隙半导体材料教育部重点实验室,西安 710071
3 西安市电力电子器件与高效电能变换重点实验室,西安 710048
为了改善GaN HEMT的自热效应,集成高热导率的金刚石衬底有助于增强器件有源区的热量耗散。然而,化学气相淀积(CVD)生长的多晶金刚石(PCD)具有柱状晶粒结构,导致了各向异性的材料热导率,且其热导率值与生长厚度有关。为此,通过建模金刚石生长过程中晶粒尺寸的演变过程,计算了金刚石沿面内和截面方向的热导率。基于该PCD热导率模型,利用计入材料非线性热导率的GaN器件热阻解析模型,计算得到了GaN HEMT沟道温度的波动范围,并分析了其与器件结构(栅长、栅宽、栅间距、衬底厚度)和功耗的依赖关系。最后,通过与有限元(FEM)仿真结果对比,分区域提取了GaN HEMT器件中PCD衬底的有效热导率,分别为260~310 W/(m·K)和1 250~1 450 W/(m·K)。本文的计算为预测金刚石衬底上GaN HEMT器件的沟道温度提供了快速、有效的方法。
沟道温度 各向异性 热导率 解析模型 器件热阻 GaN HEMT GaN HEMT channel temperature anisotropy thermal conductivity analytical model device thermal resistance 
人工晶体学报
2022, 51(2): 222
作者单位
摘要
西南交通大学 微电子研究所, 成都 611756
研究了氮化镓高电子迁移率晶体管(GaN HEMT)的温度特性, 分析了自热效应造成GaN HEMT的电流崩塌现象。提出了一种图形化衬底技术来降低器件温度。在缓冲层与衬底界面设置与缓冲层同材料的梯形微阱, 在势垒层与钝化层界面设置无掺杂和低Al组分的AlGaN矩形微阱。结果表明, 与无微阱结构器件相比, 新型有微阱结构器件的温度峰值降低了18.148 K, 电流崩塌效应改善比值达20.64%。
自热效应 电流崩塌 微阱 GaN HEMT GaN HEMT self-heating effect current collapse micropit 
微电子学
2021, 51(5): 734
作者单位
摘要
1 School of Information and Electronics, Beijing Institute of Technology, Beijing 0008, China
2 Hebei Semiconductor Research Institute, Shijiazhuang 050051,China
介绍了一种由矩形微带贴片天线和功率放大器一体化集成设计的发射类型单片太赫兹集成电路.该电路采用 GaN HEMT 工艺制备, 实现了高功率密度和高效集成.片上天线被设计为功率放大器输出端接的功率辐射器和频率相关的输出负载调谐器.采用负载牵引技术实现了放大器与天线之间良好的阻抗匹配.在 100~110 GHz的频带范围内, 功率放大器的平均输出功率为 25.2 dBm, 平均功率附加效率(PAE) 为5.83%.单片太赫兹集成电路具有良好的辐射特性, 芯片的10 dB带宽为 1.5 GHz, 在109 GHz估算的等效各向同性辐射功率 (EIRP) 为 25.5 dBm.
单片太赫兹集成电路技术 氮化镓高电子迁移率晶体管 有源集成天线 辐射方向图 TMIC technology GaN HEMT active integrated antenna radiation pattern 
红外与毫米波学报
2019, 38(6): 683
赵勇兵 1,2,3,4,*张韵 1,2,3程哲 1,2,3黄宇亮 1,2,3,4[ ... ]李晋闽 1,2,3
作者单位
摘要
1 中国科学院半导体研究所 半导体照明研发中心, 北京100083
2 半导体照明联合创新国家重点实验室, 北京100083
3 北京市第三代半导体材料及应用技术工程中心, 北京100083
4 中国科学院大学, 北京100049
介绍了一种具有高阈值电压和大栅压摆幅的常关型槽栅AlGaN/GaN金属氧化物半导体高电子迁移率晶体管。采用原子层淀积(ALD)方法实现Al2O3栅介质的沉积。槽栅常关型AlGaN/GaN MOS-HEMT的栅长(Lg)为2 μm, 栅宽(Wg)为0.9 mm(0.45 mm×2), 栅极和源极(Lgs)之间的距离为5 μm, 栅极和漏极(Lgd)之间的距离为10 μm。在栅压为-20 V时, 槽栅常关型AlGaN/GaN MOS-HEMT的栅漏电仅为0.65 nA。在栅压为+12 V时, 槽栅常关型AlGaN/GaN MOS-HEMT的栅漏电为225 nA。器件的栅压摆幅为-20~+12 V。在栅压Vgs=+10 V时, 槽栅常关型AlGaN/GaN MOS-HEMT电流和饱和电流密度分别达到了98 mA和108 mA/mm (Wg=0.9 mm), 特征导通电阻为4 mΩ·cm2。槽栅常关型AlGaN/GaN MOS-HEMT的阈值电压为+4.6 V, 开启与关断电流比达到了5×108。当Vds=7 V时, 器件的峰值跨导为42 mS/mm (Wg=0.9 mm, Vgs=+10 V)。在Vgs=0 V时, 栅漏间距为10 μm的槽栅常关型AlGaN/GaN MOS-HEMT的关断击穿电压为450 V, 关断泄露电流为0.025 mA/mm。
高阈值电压 大栅压摆幅 常关型 特征导通电阻 AlGaN/GaN AlGaN/GaN HEMT with Large Gate Swing 
发光学报
2016, 37(6): 720

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!