作者单位
摘要
Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
Close packed ZnO nanoparticles on carbon cloth were synthesized by repeating a facile hydrothermal route in this study. After characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), the obtained ZnO cloth was further studied for the applications in lithium (Li)-ion batteries (LIBs) and dye-sensitized solar cells (DSSCs). When ZnO cloth annealed at 400°C for 2 h were used as anodes of LIBs, it exhibited high capacity of 600 mAh/g and outstanding cycling capability without significant fading after 130 cycles. Moreover, it was also found that our electrodes displayed good stabilities under various humidity and temperature. Furthermore, the obtained composites were calcined at higher temperature (800°C) to remove carbon and white pure ZnO cloth was formed. We transferred the as-formed ZnO cloth to fluorine-doped tin oxide (FTO) substrate to make DSSCs, exhibiting an improved efficiency of around 0.38% assisted by TiCl4 treatment.
lithium-ion batteries (LIBs) lithium-ion batteries (LIBs) dye-sensitized solar cells (DSSCs) dye-sensitized solar cells (DSSCs) ZnO nanoparticles ZnO nanoparticles carbon cloth carbon cloth facile hydrothermal route facile hydrothermal route 
Frontiers of Optoelectronics
2015, 8(2): 220
作者单位
摘要
1 延安大学 物理与电子信息学院, 延安 716000
2 西北大学 信息科学与技术学院, 西安 710127
利用水热法制备了菊花状的氧化锌纳米棒, 并进行表征, 将纳米氧化锌掺入纳米金刚石中配制成电泳液, 超声分散后电泳沉积到钛衬底上, 再经热处理后进行场发射特性的测试.结果表明:未掺混的金刚石阴极样品的开启电场为7.3 V/μm, 在20 V/μm的电场下, 场发射电流密度为81 μA/cm2;掺混后阴极样品的场发射开启电场降低到4.7~6.0 V/μm, 在20 V/μm电场下, 场发射电流密度提高到140~158 μA/cm2.原因是纳米ZnO掺入后, 增强了涂层的电子输运能力、增加了有效发射体数目, 提高了场增强因子β, 而金刚石保证了热处理后涂层与衬底的良好键合, 形成了欧姆接触, 降低了场发射电流的热效应.场发射电流的稳定性随掺混ZnO量的增加而下降, 要兼顾场发射电流密度及其稳定性, 适量掺入ZnO可有效提高纳米金刚石的场发射性能.
表征 场发射特性 水热法 纳米金刚石 氧化锌纳米棒 掺混 键合 Characterization Field emission characteristics Hydrothermal route Nano-diamond ZnO nanorods Mixed Bonding 
光子学报
2015, 44(2): 0216001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!