作者单位
摘要
1 电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
2 北京大学 东莞光电研究院, 广东 东莞 523808
3 电子科技大学 广东电子信息工程研究院, 广东 东莞 523808
4 无锡先瞳半导体科技有限公司, 江苏 无锡 214000
雪崩倍增效应是4H-SiC雪崩光电二极管、功率半导体器件等器件的关键机理。作为其中最重要的物理参数,雪崩倍增因子(M)的精确解析表达式目前未见报道。文章提出4H-SiC p-n结M的精确计算方法及其解析表达式。基于更准确的碰撞电离模型,通过MATLAB对4H-SiC单边突变结(p+-n)电子和空穴的碰撞电离积分(I)进行精确的数值计算,给出击穿电压(BV)随掺杂浓度的经验表达式,进一步提出电离积分随外加电压及掺杂浓度的拟合表达式。此外,对外加电压接近BV的情形进行细致的相对误差分析,表明电子电离积分受电场影响显著。对于雪崩光电二极管及功率器件较宽的BV范围,所提出的拟合表达式在外加反向偏压大于0.65BV时具有较高的精确度(相对误差小于5%)。
雪崩倍增因子 碰撞电离积分 Miller公式 4H-SiC 4H-SiC avalanche multiplication factor impact ionization integral Miller formula 
微电子学
2023, 53(2): 333
作者单位
摘要
1 中国科学院半导体研究所 集成光电子学国家重点实验室, 北京 100083
2 中国科学院大学 电子电气与通信工程学院, 北京 100049
3 中国电子科技集团公司第四十四研究所 化合物半导体光电子事业部, 重庆 400060
通过测量平面型InGaAs/InP雪崩光电二极管闭管扩散器件帽层InP中Zn杂质的分布, 拟合出掺杂浓度随扩散深度的变化函数, 并且利用离化积分研究不同倍增层厚度下的最佳刻蚀坑深度和最佳刻蚀方法.结果表明在帽层深度不变的情况下, 最佳刻蚀坑深度会随着倍增层厚度而变化, 当倍增层厚度为1 μm左右时刻蚀坑深度在0.1~0.3 μm之间.采取反应离子刻蚀可以获得良好的刻蚀坑形貌, 有利于边缘击穿的抑制.
雪崩光电二极管 光探测器 离化积分 电场击穿 刻蚀 反应离子刻蚀 盖革计数 Avalanche photodiodes Photodetectors Ionization integral Electric breakdown Etching Reactive ion etching Geiger counters 
光子学报
2018, 47(5): 0523001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!