光子学报, 2018, 47 (5): 0523001, 网络出版: 2018-09-07   

用刻蚀坑方法抑制平面型InGaAs/InP盖革模式APD的边缘击穿

Using Etch Well to Suppress Edge Breakdown of Planar-type InGaAs/InP Geiger Mode Avalanche Photodiodes
作者单位
1 中国科学院半导体研究所 集成光电子学国家重点实验室, 北京 100083
2 中国科学院大学 电子电气与通信工程学院, 北京 100049
3 中国电子科技集团公司第四十四研究所 化合物半导体光电子事业部, 重庆 400060
摘要
通过测量平面型InGaAs/InP雪崩光电二极管闭管扩散器件帽层InP中Zn杂质的分布, 拟合出掺杂浓度随扩散深度的变化函数, 并且利用离化积分研究不同倍增层厚度下的最佳刻蚀坑深度和最佳刻蚀方法.结果表明在帽层深度不变的情况下, 最佳刻蚀坑深度会随着倍增层厚度而变化, 当倍增层厚度为1 μm左右时刻蚀坑深度在0.1~0.3 μm之间.采取反应离子刻蚀可以获得良好的刻蚀坑形貌, 有利于边缘击穿的抑制.
Abstract
By measuring the distribution of impurity Zn in InP of planar-type InGaAs/InP Geiger mode Avalanche Photodiodes,the function of doping concentration with diffusion depth was fitted, and the optimum depth of etch well at different multiplication layer thickness as well as the best etching method were studied using ionization integral.The results show that the optimum etch well depth is varied with multiplication layer thickness when the thickness of top InP is constant.And when the multiplication layer thickness is about 1 μm, the well depth should be between 0.1 μm and 0.3 μm. Reactive ion etching can obtain a good etch well morphology, which is beneficial to the suppression of edge breakdown.
参考文献

[1] ACERBI F, ANTI M, TOSI A, et al. Design criteria for InGaAs/InP single-photon avalanche diode[J]. IEEE Photonics Journal, 2013, 5(2): 6800209.

[2] ITZLER M A, ENTWISTLE M, JIANG X, et al. Geiger-mode APD single-photon cameras for 3D laser radar imaging[C]. IEEE Aerospace Conference, 2014: 1-12.

[3] ITZLER M A, ENTWISTLE M, KRISHNAMACHARI U, et al. SWIR Geiger-mode APD detectors and cameras for 3D imaging[C]. SPIE, 2014: 91140F.

[4] JIANG X, ITZLER M, O’DONNELL K, et al. InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(3): 5-16.

[5] PITTS O J, HISKO M, BENYON W, et al. Planar avalanche photodiodes with edge breakdown suppression using a novel selective area growth based process[J]. Journal of Crystal Growth, 2017, 470: 149-153.

[6] KAO Y C, WOLLEY E D. High-voltage planar p-n junctions[J]. Proceedings of the IEEE, 1967, 55(8): 1409-1414.

[7] TAGUCHI K, TORIKAI T, SUGIMOTO Y, et al. Planar-structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 μm wavelength optical communication use[J]. Journal of Lightwave Technology, 1988, 6(11): 1643-1655.

[8] YAGYU E, SUGIHARA K, NISHIOKA T, et al. Planar avalanche photodiode for long-haul single-photon optic fiber communications[J]. Applied Physics Express, 2007, 1(1): 155-162.

[9] BURM J, CHOI J Y, CHO S R, et al. Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication Layers for 10-gb/s applications[J]. IEEE Photonics Technology Letters, 2004, 16(7): 1721-1723.

[10] WEI R, DRIES J C, WANG H, et al. Optimization of 10-Gb/s long-wavelength floating guard ring InGaAs-InP avalanche photodiodes[J]. IEEE Photonics Technology Letters, 2002, 14(7): 977-979.

[11] HYUN K S, KWON Y H, YUN I. Characteristics of a planar InP/InGaAs avalanche photodiode with a thin multiplication layer[J]. Journal- Korean Physical Society, 2004, 4479(4): L779-L784.

[12] KIM M D, BAEK J M, WOO Y D, et al. Double floating guard-ring-type InP/InGaAs avalanche photodiodes with low-resistance ohmic contacts[J]. Journal- Korean Physical Society, 2007, 50(6): 1925-1928.

[13] TAROF L E, KNIGHT D G, FOX K E, et al. Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery[J]. Applied Physics Letters, 1990, 57(7): 670-672.

[14] TAROF L E, BRUCE R, KNIGHT D G, et al. Planar InP-InGaAs single-growth avalanche photodiodes with no guard rings[J]. IEEE Photonics Technology Letters, 2002, 7(11): 1330-1332.

[15] HARALSON J N, PARKS J W, BRENNAN K F, et al. Numerical simulation of avalanche breakdown within InP-InGaAs SAGCM standoffavalanche photodiodes[J]. Journal of Lightwave Technology, 2002, 15(11): 2137-2140.

[16] YUN I, HYUN K S. Zinc diffusion process investigation of InP-based test structures for high-speed avalanche photodiode fabrication[J]. Microelectronics Journal, 2000, 31(8): 635-639.

[17] ITZLER M A, JIANG X, ENTWISTLE M, et al. Advances in InGaAsP-based avalanche diode single photon detectors[J]. Journal of Modern Optics, 2011, 58(3-4): 174-200.

[18] ZAPPA F, LOVATI P, LACAITA A. Temperature dependence of electron and hole ionization coefficients in InP[C]. IEEE Eighth International Conference on Indium Phosphide and Related Materials, 1996: 628-631.

侯丽丽, 韩勤, 李彬, 王帅, 叶焓. 用刻蚀坑方法抑制平面型InGaAs/InP盖革模式APD的边缘击穿[J]. 光子学报, 2018, 47(5): 0523001. HOU Li-li, HAN Qin, LI Bin, WANG Shuai, YE Han. Using Etch Well to Suppress Edge Breakdown of Planar-type InGaAs/InP Geiger Mode Avalanche Photodiodes[J]. ACTA PHOTONICA SINICA, 2018, 47(5): 0523001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!