刘钊 1,2,3余洋 1,2,3王庆 1,2,3,*
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 信息光子技术工业和信息化部重点实验室,北京 100081
3 光电成像技术与系统教育部重点实验室,北京 100081
介绍了一种无法拉第旋光器的驻波腔再生放大器,通过利用偏振片的剩余反射率,实现种子激光注入与再生腔输出激光输出的光路分离。最终,在10 kHz重复频率下,实现了平均功率为4.87 W的放大皮秒脉冲激光输出,对应的脉冲宽度为53 ps,激光光束质量因子为M2<1.19。
激光光学 再生放大器 驻波腔 法拉第旋光器 Nd∶YVO4 
光学学报
2022, 42(23): 2314001
作者单位
摘要
西南技术物理研究所, 成都 610041
为了提高高重频掺钕钒酸钇激光器的放大效率, 提出了一种针对Nd∶YVO4单轴晶体的新型双程放大方式, 采用法拉第隔离器与Nd∶YVO4晶体旋转45°放置的方式, 使得种子激光在往返通过晶体时的线偏方向均为π偏振方向。结果表明, 在100W抽运功率下, 1W种子激光采用该双程放大方式的输出功率能够达到36.2W, 放大效果较之偏振片与λ/4波片组成的双程放大结构提高了41.5%。本研究对以Nd∶YVO4单轴晶体为放大级的弱种子激光放大有重要意义。
激光器, 双程放大, Nd∶YVO4晶体, 窄脉冲, π偏振 lasers, double-pass amplification, Nd∶YVO4 narrow pulse π polarization 
激光技术
2020, 44(6): 674
作者单位
摘要
华中光电技术研究所-武汉光电国家研究中心, 湖北 武汉 430223
Nd∶YVO4晶体一般采用 808nm激光作为泵浦源, 但是其强烈的吸收导致了严重的热效应, 限制了激光输出功率和光束质量。采用了吸收相对较弱的 888nm激光作为泵浦源, 显著降低了 Nd∶YVO4晶体在高泵浦功率下的热效应; 结合自主研发的全光纤结构皮秒种子源, 利用再生放大器, 实现了脉冲宽度 12.1ps、重复频率 100~500kHz、最高单脉冲能量超过 250μJ的 1064nm皮秒激光输出。该再生放大器具备体积紧凑、脉冲稳定、单脉冲能量较高、转换效率较高、光束质量良好的优势, 可直接或继续放大后作为超快激光加工系统的光源。
再生放大器 端面泵浦 带内泵浦 掺钕钒酸钇 皮秒激光 regenerative amplifier end-pumped in-band pumped Nd∶YVO4 picosecond laser 
光学与光电技术
2020, 18(2): 78
作者单位
摘要
1 北京交通大学理学院, 北京 100044
2 中国科学院光电研究院计算光学成像技术重点实验室, 北京 100094
3 中国科学院大学, 北京 100049
通过研究双折射晶体Nd∶YVO4的偏振特性,利用楔角为10°的Nd∶YVO4激光晶体和倍频晶体KTP(磷酸钛氧钾)在绿光激光器中构造了一个新型双折射滤波器。理论分析了KTP晶体的长度、基频光在KTP中的入射角度和KTP的温度对双折射滤波器选频的影响。实验中使用长度为4.4,5,7 mm的KTP,采用V型腔结构,最后分别获得了90,120,104 mW的单频绿光。实验结果表明,由楔形Nd∶YVO4和KTP构成的双折射滤波器成功实现了激光单纵模运转,且方法简单易行。当KTP晶体长度为5 mm时,测得楔形Nd∶YVO4/KTP激光器的单纵模运转温度范围约为5 ℃。
激光器 Nd∶YVO4晶体 单纵模运转 双折射滤波器 KTP晶体 
中国激光
2020, 47(3): 0301011
李斌 1,2,*孙冰 2,3苗银萍 1
作者单位
摘要
1 天津理工大学电气电子工程学院, 天津 300384
2 天津梅曼激光技术有限公司, 天津 300111
3 天津大学精密仪器与光电子工程学院激光与光电子研究所, 光电信息技术科学教育部重点实验室, 天津 300072
报道了一种锁波长914 nm共振抽运的Nd∶YVO4/LBO腔内倍频的绿光激光器,利用锁波长914 nm的半导体激光器作为抽运源,极大地提高了抽运的均匀性和抽运效率,降低了激光器的热效应,从而获得了高光束质量的532 nm激光输出。当抽运功率为18 W,调制频率为130 kHz时,获得了最高输出功率为6.7 W的绿光,入射抽运光的光-光转换效率为37.2%,对应的吸收抽运光的光-光转换效率为60%。
激光器 锁波长 共振抽运 Nd∶YVO4晶体; 倍频 532 nm 
中国激光
2019, 46(10): 1001004
崔建丰 1,2,*岱钦 1邬小娇 2李福玖 2[ ... ]杨帆 1
作者单位
摘要
1 沈阳理工大学 理学院, 辽宁 沈阳 110159
2 鞍山紫玉激光科技有限公司, 辽宁 鞍山 114044
研制了二极管(LD)侧面泵浦Nd∶YVO4高重复频率355 nm紫外激光器, 针对Nd∶YVO4激光晶体的增益高、泵浦带宽宽的优点, 激光器采用LD均匀三角侧面泵浦结构, 利用声光调Q方式, 选用Ⅰ类和Ⅱ类相位匹配的LBO非线性晶体, 设计了腔内三倍频V型谐振腔结构, 获得了高重频、高增益的355 nm紫外激光输出。在泵浦LD电流为30 A、重复频率为20 kHz时, 355 nm激光输出最大平均功率达到了8.5 W, 激光脉冲宽度为37 ns, 1 064 nm基频光到355 nm紫外激光的光-光转换效率为25.8%, 紫外激光泵浦阈值约为16 A。
LD侧面泵浦Nd∶YVO4 紫外激光 高重频 LD side-pumped Nd∶YVO4 ultraviolet laser high repetition rate 
发光学报
2019, 40(8): 1011
作者单位
摘要
温州大学物理与电子信息工程学院, 浙江 温州 325035
利用偏振分束器(PBS)选择性地实现a轴切割Nd∶YVO4晶体π和σ偏振的激光输出的实验研究。四方晶系Nd∶YVO4晶体偏振荧光光谱的差异, 导致了输出π和σ偏振激光的性能差别。实验中利用PBS的反射光束主动选偏, 结合激光晶体沿通光方向旋转, 分别对a轴切割Nd∶YVO4晶体的4F3/2~4I11/2和4F3/2~4I13/2能级跃迁的偏振激光性能进行测试。在11 W的入射抽运功率下, 基于4F3/2~4I11/2能级跃迁分别获得了5.5 W的π偏振1064.3 nm激光输出和4.4 W的σ偏振1066.7 nm激光输出; 基于4F3/2~4I13/2能级跃迁分别获得了2.9 W的π偏振激光输出和1.6 W的σ偏振激光输出, 但波长均为1341.8 nm。实验结果表明:a轴切割Nd∶YVO4晶体的π偏振激光输出有更高的转换效率, 而σ偏振激光输出则有更长的激光谱线。
激光器 偏振选择器件 Nd∶YVO4晶体 偏振分束器 
中国激光
2017, 44(7): 0701007
作者单位
摘要
北京工业大学激光工程研究院, 北京 100124
高重复频率再生放大器的能量提取周期远小于激光增益介质上能级寿命,这会导致再生放大器输出一高一低两种能量的激光脉冲,即倍周期分叉现象。针对上述问题,从理论上分析高重复频率Nd∶YVO4再生放大器的输出脉冲稳定性与重复频率之间的关系,发现提高再生放大器重复频率可以避免出现倍周期分叉现象,并通过实验验证了当重复频率大于250 kHz时,Nd∶YVO4再生放大器没有出现倍周期分叉现象。此外,在吸收抽运功率为70 W时,实现了对单脉冲能量为1 nJ、重复频率为94 MHz的全固态Nd∶YVO4晶体半导体可饱和吸收镜锁模种子激光脉冲的再生放大,得到重复频率可调(250~500 kHz)的皮秒激光,其最大输出功率达到18 W,单脉冲能量为36 μJ。
激光技术 全固态激光器 再生放大技术 高重复频率 
激光与光电子学进展
2017, 54(6): 061403
崔建丰 1,2,*王迪 1张亚男 1高涛 1[ ... ]姚俊 2
作者单位
摘要
1 鞍山紫玉激光科技有限公司, 辽宁 鞍山 114000
2 沈阳理工大学理学院, 辽宁 沈阳 110159
报道了LD侧面抽运Nd∶YVO4 532 nm准连续绿光激光器。为了获得高功率的532 nm绿光输出,通过采用声光调Q技术和LD侧面抽运Nd∶YVO4技术来获得高功率线偏振的1064 nm激光输出。采用Ⅰ类相位匹配三硼酸锂(LBO)晶体腔内倍频,实现高功率532 nm激光输出。在电源输出电流为30 A、声光调Q的调制频率为20 kHz的工作条件下,获得平均输出功率为33 W的线偏振1064 nm基频光,通过LBO晶体倍频获得平均输出功率为23.5 W的532 nm绿光。1064 nm基频光到532 nm绿光的光-光转换效率达71.2%,脉冲宽度为44.3 ns,偏振比为254∶1。
激光器 绿光激光器 LD侧面抽运 Nd∶YVO4晶体 
激光与光电子学进展
2017, 54(4): 041402
作者单位
摘要
1 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
报道了一种基于被动调Q Nd∶YAG 微片结构的主振荡功率放大和Nd∶YVO4板条多程放大的激光器。主振荡级采用Nd∶YAG/Cr4+∶YAG 被动调Q 微片激光器,在重复频率为1 kHz时,输出单脉冲能量为82 μJ 、脉冲宽度为1 ns的近衍射极限的激光输出。为了实现信号光在Nd∶YVO4中获得5 次放大,设计采用了多程往返光路。得到最大单脉冲能量为2.3 mJ ,脉宽为1 ns 的激光输出,峰值功率大于2 MW ,光束质量M2 因子为M 2x = 2.48 和M 2y = 1.24 。该激光器结构简单、紧凑,采用传导冷却进行散热,适用于空间激光,在15 ℃~32 ℃的范围内,输出能量波动小于4%。
激光器 主振荡功率放大器 多程放大 被动调Q 
中国激光
2015, 42(9): 0902005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!