陈善学 1,2胡之源 1,3,*
作者单位
摘要
1 重庆邮电大学通信与信息工程学院,重庆 400065
2 移动通信教育部工程研究中心,重庆 400065
3 移动通信技术重庆市重点实验室,重庆 400065
传统非负矩阵分解(NMF)应用于高光谱解混时,容易受到椒盐噪声的干扰,造成解混的失败。以往的稀疏解混需要在涉及信息比较分散且易受噪声影响的空间域中寻找最优特征子集。为了解决这些问题,提出了基于空谱约束的加权稀疏柯西非负矩阵分解(SSCNMF)算法,首先采用基于柯西损失函数的NMF模型,其在抑制极端异常值方面,有着良好的鲁棒性。其次,引入自适应稀疏权重因子,提高了丰度矩阵的稀疏性。同时,加入光谱空间约束项,其中光谱因子用于测量不同光谱之间的丰度稀疏度,空间因子利用了丰度空间域的平滑性,提高了数据特征的提取效率。分别对模拟数据集和真实数据集进行了仿真实验,通过与一些经典高光谱解混算法的对比,验证了SSCNMF算法的有效性和优良的抗噪声性能。
遥感与传感器 高光谱解混 非负矩阵分解 柯西损失函数 稀疏 空谱约束 
激光与光电子学进展
2023, 60(10): 1028006
作者单位
摘要
1 西安邮电大学 电子工程学院,陕西西安702
2 西安电子科技大学 电子工程学院,陕西西安710071
针对高光谱遥感图像的非线性解混问题,提出一种多图正则多核非负矩阵分解(MGMKNMF)算法,构造了多核空间中的多图正则项,并基于此构造了包含多核空间的多图正则项、多核权重正则项和多图权重正则项的MGMKNMF目标函数。MGMKNMF可在学习端元与丰度的过程中更新多核权重和多图权重,在合适的多核空间精确构造输入数据的图,解决了图权重和核权重的参数选择的问题。相比核非负矩阵分解(KNMF)的单一核,多核可确定更合适的核空间;相比图正则非负矩阵分解(GNMF)的单一图,多图更准确可靠。2个实测数据集和2个模拟数据集上的实验结果表明MGMKNMF算法是有效的。与GNMF、不含纯像元的核非负矩阵分解、核稀疏非负矩阵分解、基于核的字典剪枝非线性光谱解混、多图正则核非负矩阵分解算法相比,所提MGMKNMF算法在Cuprite和Jasper Ridge真实地物数据集上平均光谱角距离(SAD)值最优,分别为0.092 1和0.097 0;在HAPKE和广义双线性模型模拟数据集上平均SAD最优,分别是0.137 5和0.145 6,均方根误差值表现也最好,分别为0.050 6和0.057 0。
解混 多图正则多核非负矩阵分解 正则化 高光谱图像 unmixing multi-graph regularized multi-kernel nonnegative matrix factorization (MGMKNMF) regularization hyperspectral image 
光学 精密工程
2022, 30(14): 1657
作者单位
摘要
西安工业大学 光电工程学院,西安 710021
近年来许多方法被提出以实现透过散射介质的聚焦和成像,然而,在非入侵且无波前整形技术的情况下,透过散射介质的目标光谱重建仍极具挑战。提出了一种非侵入式散射介质内多光谱重建的新方法。该方法通过非侵入式的探测手段,利用随机散斑照明隐藏目标,成像光谱仪记录目标的光谱信息和空间信息,并结合非负矩阵分解算法对目标混叠谱进行解析,从而实现散射介质内多光谱重建。仿真实验结果表明:该方法可以快速分辨并重建散射介质内的多个目标光谱,且重建光谱具有高的光谱相关性(大于0.99)和低的均方根误差(小于0.02)。
散射 多光谱重建 非负矩阵分解 成像光谱仪 光学散斑 Scattering Multi-spectral reconstruction Nonnegative matrix factorization Imaging spectrometer Optical speckle 
光子学报
2022, 51(2): 0230002
作者单位
摘要
1 海军航空大学航空作战勤务学院,山东 烟台 264000
2 杭州声学应用研究所,杭州 310000
水声目标的特征相似和海洋环境噪声的多变,使得非负矩阵分解(NMF)算法的信号增强效果不佳。为此,提出基于改进NMF的增强算法,该算法一方面使用实际海洋环境噪声实时更新背景噪声基矩阵,以增强基向量的匹配性,另一方面对特征基矩阵进行相似检测去冗余,以消除系数分散造成的基向量丢失,最后构建增强滤波器实现目标信号的重构增强。实验结果表明,相比于正则化NMF算法、改进正交匹配追踪方法,所提算法取得最优的信号增强效果,并通过实测数据轴频提取实验结果进一步验证了所提算法的有效性。
水下目标识别 辐射噪声 信号增强 改进非负矩阵分解 余弦相似性 实时噪声基矩阵更新 underwater target recognition radiation noise signal enhancement improved nonnegative matrix factorization cosine similarity real-time noise basis matrix update 
电光与控制
2021, 28(9): 6
作者单位
摘要
杭州电子科技大学 自动化学院,杭州310018
为了得到改进的优化解,提出一种基于丰度和端元约束下非负矩阵分解的解混方法。首先,基于丰度矩阵稀疏性特点,将重加权稀疏正则化引入到非负矩阵分解模型中,其中权重根据丰度矩阵自适应更新。其次,根据同一地物在相邻像素中分布的相似性先验,进一步将全变差正则化引入到非负矩阵分解模型中,以改进其丰度平滑性。最后,通过一个马尔可夫随机场模型中的势函数,实现端元光谱平滑性的约束。为了验证所提算法的性能,在一个模拟数据集和两个真实数据集(Jasper Ridge和Cuprite)进行了测试。结果表明:所提方法在端元光谱相似性和丰度估计精度等方面都有所改进。
遥感 高光谱解混 非负矩阵分解 高光谱图像 稀疏矩阵 平滑性 马尔科夫随机场 Remote sensing Hyperspectral unmixing Nonnegative matrix factorization Hyperspectral imaging Sparse matrices Smoothing Markov random fields 
光子学报
2021, 50(7): 113
作者单位
摘要
火箭军工程大学,陕西 西安 710025
近年来基于非负矩阵分解(Nonnegative Matrix Factorization, NMF)的高光谱图像解混方法引起了大家的广泛关注。但是由于NMF问题的非凸性,该方法并不能保证解的唯一性,容易陷入局部极小。为了缩小NMF问题的解空间,提高解混精度,提出了一种新的丰度重加权稀疏NMF(ARSNMF)的解混方法。首先,考虑到丰度矩阵的稀疏性,稀疏约束被添加到NMF模型中。接着,考虑到问题计算复杂、不易于优化,将其转化为重加权稀疏约束的形式,既实现了的稀疏效果,又解决了范数难以求解的问题。为提高算法收敛速度,采用交替方向乘子算法(ADMM)对模型进行优化, 将目标函数拆分成几个子问题进行独立求解。基于仿真数据和真实数据的仿真实验验证了该解混算法的有效性。
高光谱图像解混 非负矩阵分解(NMF) 稀疏约束 重加权 hyperspectral image unmixing Nonnegative Matrix Factorization (NMF) sparse constraint reweighted Alternating Direction Method of Multipliers (ADMM) 
红外与激光工程
2020, 49(S2): 20200152
黄尧 1,2,3赵南京 1,3,*孟德硕 1,3左兆陆 1,2,3[ ... ]陈晓伟 1,2,3
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
采用荧光分光光度计直接获取土壤中多环芳烃(PAHs)的三维荧光光谱,并利用非平滑非负矩阵分解(nsNMF)对其进行解析,结果表明,非负矩阵分解(NMF)能够从混叠光谱中提取出单一多环芳烃的荧光光谱信号。在随机初始值下,nsNMF优于基于交替式非负最小二乘的标准非负矩阵分解(NMF/ANLS),解析光谱与参考光谱的相似系数均在0.824以上。特别是在农田土壤中,菲和蒽的解析光谱与标准参考光谱的相似系数分别由0.758、0.845(NMF/ANLS)提高到0.907、0.913(nsNMF)。三维荧光光谱结合nsNMF能够实现土壤多环芳烃组分的快速识别。
光谱学 三维荧光光谱 非负矩阵分解 土壤 多环芳烃 组分识别 
中国激光
2020, 47(10): 1011002
方帅 1,**王金明 1,*曹风云 2,3
作者单位
摘要
1 合肥工业大学计算机与信息学院人工智能与数据挖掘研究室, 安徽 合肥 230601
2 合肥工业大学工业安全与应急技术安徽省重点实验室, 安徽 合肥 230601
3 合肥师范学院计算机学院, 安徽 合肥 230601
光谱解混可以有效提升高光谱图像的利用效率。非负矩阵分解(NMF)常用于寻找非负数据的线性表示,可以有效解决混合像元问题。基于丰度的稀疏性和图像局部不变性提出一种高光谱解混算法。对丰度采取稀疏性约束和基于拉普拉斯矩阵的图正则项约束,构造了一个新的目标函数,端元和丰度在经过若干次迭代后取得了较好的解混合结果。该算法在模拟和真实数据上都进行了有效性验证,实验结果证明所提算法具有良好的解混性能。
图像处理 光谱解混合 非负矩阵分解 端元 丰度 
激光与光电子学进展
2019, 56(16): 161001
作者单位
摘要
湖南工业大学交通工程学院, 湖南 株洲 412007
传统的高光谱混合像元分解方法仅考虑高光谱图像的几何特性或者丰度的稀疏性,而忽略高光谱数据的光谱空间特性。当原图像中不存在纯净像元时,分解精度将严重下降。为了解决这些问题,提出一种改进的空间信息约束非负矩阵分解的解混算法,该方法充分利用高光谱图像的空间信息和稀疏性,提高了传统非负矩阵分解算法的性能。合成的模拟图像和真实的高光谱图像实验表明,该方法克服了传统方法对噪声的敏感性及对纯像元的依赖性。
图像处理 高光谱混合像元分解方法 非负矩阵分解 光谱空间信息 稀疏性 
激光与光电子学进展
2019, 56(11): 111006
作者单位
摘要
1 中国科学院西安光学精密机械研究所, 陕西 西安 710119
2 中国科学院大学, 北京 100049
由于受到高光谱遥感图像传感器平台的限制, 图像的空间分辨率受到一定影响, 这导致高光谱遥感图像的像元通常是多种地物的混合, 也叫做混合像元。 混合像元的存在制约了高光谱遥感图像的准确分析和应用领域。 采用高光谱解混技术可将混合像元分解为纯净的物质光谱(Endmember, 端元)和每种物质光谱所对应的混合比例(Abundance, 丰度), 为获取更多更精细的光谱提供了可能。 这对高精度的地物分类识别、 目标检测和定量遥感分析等研究领域具有重要的意义。 因此, 解混技术成为高光谱遥感图像领域的一个研究热点。 基于线性光谱混合模型(linear spectral mixing model, LMM), 提出了一种端元丰度联合稀疏约束的图正则化非负矩阵分解(endmember and abundance sparse constrained graph regularized nonnegative matrix factorization, EAGLNMF)算法。 该算法通过研究基于非负矩阵分解(nonnegative matrix factorization, NMF)的方法, 结合图正则化理论来考虑高光谱数据内部的几何结构, 将端元光谱稀疏约束和丰度稀疏约束应用于其中, 从而能够对高光谱数据的内部流形结构进行更为有效的表达。 首先, 构造了EAGLNMF算法的损失函数, 采用VCA-FCLS方法进行初始化, 然后, 设定相关参数, 包括图正则化权重矩阵参数、 端元光谱稀疏约束因子和丰度矩阵稀疏约束因子, 最后, 通过推导得到了端元矩阵与丰度矩阵的迭代公式, 并且设置了迭代停止条件。 该方法不受图像中是否有纯像元的限制。 实际上, 在现行高光谱遥感传感器平台情况下, 高光谱遥感图像中几乎不存在纯像元, 因此, EAGLNMF方法为高光谱遥感图像的实际应用提供了一种思路。 采用合成的高光谱数据, 构造了4个实验来分析该方法的可行性和有效性, 实验将该算法与VCA-FCLS, 标准NMF及GLNMF等经典的解混算法进行比较, 通过光谱角距离(spectral angle distance, SAD)和丰度角距离(abundance angle distance, AAD)这两个度量标准来进行比较。 实验1是总体分析实验。 在固定的信噪比和固定端元数目的情况下, 用以上三种经典方法与EAGLNMF同时进行解混。 实验2是SNR影响分析实验。 在固定端元数目和不同信噪比的情况下, 用这四种方法进行解混。 实验3端元数目分析实验。 在固定信噪比和不同端元数目的情况下, 用四种方法进行解混, 并且将结果进行对比。 实验结果发现提出的EAGLNMF方法在提取端元精度和估计丰度精度上都更为准确。 同时, 实验4是稀疏因子分析实验。 对端元稀疏约束和丰度稀疏约束之间的影响因子进行分析, 实验结果表明引入的端元稀疏约束对于解混结果也具有较好的影响, 并且端元稀疏约束和丰度稀疏约束之间的影响因子也对解混结果具有一定影响。 最后, 将该算法应用于AVIRIS所采集的真实高光谱图像数据, 将其解混结果与美国地质勘探局光谱库中光谱进行匹配对比, 其提取的平均端元精度相比于其他三种方法要稍好。
高光谱图像 图正则化 稀疏约束 非负矩阵分解 光谱解混 Hyperspectral imagery Graph regularization Sparse constraint Nonnegative matrix factorization Hyperspectral unmixing 
光谱学与光谱分析
2019, 39(4): 1118

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!