作者单位
摘要
新疆师范大学地理科学与旅游学院, 新疆 乌鲁木齐 830054 新疆维吾尔自治区重点实验室, “新疆干旱区湖泊环境与资源实验室”, 新疆 乌鲁木齐 830054
为了探究新冠疫情防控措施对乌鲁木齐市NO2污染的影响, 更有效的推动大气污染治理, 基于OMI(Ozone Monitoring Instrument)卫星遥感高光谱技术与地面监测资料相互结合, 估算了NO2干沉降通量, 并利用聚类分析与PSCF(潜在源贡献因子)潜在源方法, 对2019年—2021年疫情防控期间乌鲁木齐市NO2扩散轨迹与潜在源进行研究。 利用夜间灯光数据, 百度地图热力图工具, 高德地图POI(Point of Interface)功能区情况, 进一步分析讨论了乌鲁木齐市NO2污染来源。 研究表明: (1)乌鲁木齐市NO2浓度整体表现为: 新市区>沙依巴克区>天山区>水磨沟区>米东区, 2020年(疫情爆发期)与2019年(疫情爆发前期)同期对比发现, 各城区NO2浓度下降明显, 其中沙依巴克区减少幅度最大, 为47.63%, 2021年(后疫情时代)与2020年(疫情爆发期)同期对比发现, 各城区NO2浓度逐渐回升, 其中沙依巴克区增长幅度最大, 为60.09%。 城市热力情况表现为: 天山区>沙依巴克区>水磨沟区>新市区>米东区。 城市热力情况与NO2浓度变化情况大致相同, 米东区城市人口集聚度最低, 故城市热力值与NO2浓度均最低。 (2)长支流为远距离西北方向输送, 距离最远来自于哈萨克斯坦, 气流占比最大, 达80.32%。 短支流主要来自于乌鲁木齐市周边, 气流占比为19.69%, NO2为短寿命气体, 故气流短距离输送对乌鲁木齐NO2影响较大。 各类气流所经过的潜在源区的概率等在空间分布较为一致。 PSCF分析法模拟的潜在源贡献具有较大的可信度。 (3)将大气系统作为一个灰色系统进行分析, 按灰色关联度大小划分为: 标准煤消耗量>第二产业>工业总产值>工业用电量>人口密度>汽车拥有量>第三产业>第一产业。 在静稳天气条件下基于OMI卫星遥感资料估算乌鲁木齐市各区干沉降通量结果, 该方法可以弥补地面监测的不足, 为干沉降通量的估算提供证据。
高光谱遥感 干沉降通量 乌鲁木齐 Hyperspectral remote sensing Dry deposition flux Urumchi PSCF PSCF OMI OMI 
光谱学与光谱分析
2023, 43(6): 1981
作者单位
摘要
淮北师范大学物理与电子信息学院, 安徽 淮北 235000
基于多轴差分吸收光谱技术 (MAX-DOAS) 反演 NO2 柱浓度的方法, 构建了相应的地基 MAX-DOAS 系统, 开展了 NO2 柱浓度变化特征的观测。反演中选取天顶方向的光谱作为参考光谱, 通过非线性最小二乘法反演出 NO2 斜柱浓度 (SCD), 结合不同观测方向的斜柱浓度得到 NO2 差分斜柱浓度 (dSCD), 再利用几何近似法得到大气质量因子 (AMF), 最终获取 NO2 垂直柱浓度 (VCD)。于 2019 年 6 月至 2020 年 5 月在淮北地区开展了为期一年的外场实验, 研究结果表明淮北地区 NO2 VCD的月均值在观测期间内呈现倒“U”型变化, 在 12 月份达到最高值 2.13×1016 molecules·cm-2, 在 8 月份达到最低值 5.23×1015 molecules·cm-2。将 MAX-DOAS 观测结果的日均值与 OMI 卫星 (云系数分别为 0 多轴差分吸收光谱技术 NO2 垂直柱浓度 对比分析 multi-axis differential optical absorption spectro OMI OMI NO2 vertical column density contrastive analysis 
大气与环境光学学报
2021, 16(2): 107
作者单位
摘要
淮北师范大学 物理与电子信息学院,安徽淮北235000
构建了具有操作简单、大范围以及高灵敏度等特点的地基多轴差分吸收系统(MAX-DOAS),对淮北地区2019年10月至2020年5月进行连续观测,得到HCHO的时间序列。为了减少其他气体的干扰,采用不同波段反演HCHO差分斜柱浓度,对比发现,选用324~342 nm波段时,反演误差波动最小,能够精确获取甲醛气体浓度。由HCHO月均值序列结果可知,疫情中期与疫情前后相比,浓度分别降低了35%和23%。日变化以及周变化结果表明淮北地区HCHO浓度具有早晚高、中午低的日变化特征,且没有明显的周末效应。结合Hysplit风场后向轨迹模型对高值天气的风场进行研究,发现在2020年1月12~14日与18~21日期间,淮北地区在西北风场的影响下,会受到来自砀山等地的污染输送影响,引起HCHO浓度的升高。MAX-DOAS测量HCHO柱浓度结果与OMI卫星数据进行对比发现两种测量方式具有良好的一致性(R2=0.87)。
HCHO 多轴差分吸收光谱 OMI卫星 垂直柱浓度 浓度特征 HCHO MAX-DOAS OMI satellite Vertical column density Concentration characteristics 
光子学报
2021, 50(1): 210
张琼 1,2李昂 1,*胡肇熴 1,2吴丰成 1谢品华 1,3,4
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥230031
2 中国科学技术大学研究生院,安徽 合肥230026
3 中国科学院区域大气环境研究卓越创新中心,中国科学院城市环境研究所,福建 厦门361021
4 中国科学技术大学环境科学与光电技术学院,安徽 合肥230026
与搭载在EOS AURA卫星上的OMI(Ozone Monitoring Instrument)探测器相比,由车载被动差分吸收光谱(differential optical absorption spectroscopy, DOAS)技术 获得的NO2柱浓度数据空间分辨率更高,因而能够更准确地反映出NO2时空分布情况,利用OMI NO2 Level2数据产品重构2013年6月石家庄及周边区 域的NO2柱浓度分布,结合风场数据分析NO2柱浓度沿风场方向的空间分布,同时,使用车载被动DOAS系统对西南通道即石家庄-保定-北京路段进行走航观测, 获取车载DOAS NO2柱浓度分布数据,使用指数修正高斯(exponentially-modified Gaussian, EMG)拟合方式,分别拟合OMI NO2 数据和经过地基DOAS数据修正后 的OMI NO2数据得到NOx排放通量分别为195.8 mol/s、160.6 mol/s。经过地基DOAS数据修正的NOx排放量小于卫星估算值,可能是由于卫星的空间分辨率较低导致的。
车载差分光学吸收光谱 NO2分布 NOx排放通量 Monitoring Instrument Ozone OMI mobile DOAS NO2 distributions NOx emission flux 
大气与环境光学学报
2017, 12(1): 15
张杰 1李昂 1谢品华 1,2,*吴丰成 1[ ... ]胡肇焜 1
作者单位
摘要
1 中国科学院安徽光学精密机械研究所 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科技大学环境与光电技术学院,安徽 合肥 230026
3 河南省环境监测中心站, 河南 郑州 450004
利用OMI(Ozone Monitoring Instrument) NO2 2级数据产品通过采用面积权重得到OMI NO2对流层柱浓度网格化分布, 研究了中部地区3个代表性区域(工业集中区域,黄河流域,以及农业区域)2007~2014年NO2柱浓度时空分布特征。结果表明, NO2对流层柱浓度年均值在2009年最小, 2013年最大, 2014年相对2013年降低大于25%。同时分析了典型时间段(中国农历新年2月以及秸 秆焚烧6月)内3个区域NO2柱浓度变化特征, 2月期间3个区域柱浓度都有不同程度的下降,6月农业区NO2柱浓度上升约80%。NO2柱浓度相 对变化率进一步反映了3个区域NO2柱浓度近8年内的变化特征, 2008年年中至2009年年中工业区域以及沿河流域NO2柱浓度相对往年 同期都有高于15%的下降而农业区没有体现,但2014年以后3个区域NO2柱浓度都出现明显下降,下降比例都在20%以上。
NO2对流层柱浓度 时空变化 OMI Ozone Monitoring Instrument NO2 tropospheric column concentration spatiotemporal variations 
大气与环境光学学报
2016, 11(4): 288
作者单位
摘要
安徽师范大学国土资源与旅游学院, 安徽 芜湖 241000
基于OMI(Ozone Monitoring Instrument, OMI)卫星传感器监测得到的2006年1月~2014年12月南京都市圈对流层NO2柱浓度数据和土地利用类 型数据,利用余弦曲线函数和HYSPLIT后向轨迹模型,分析了研究区对流层NO2时空分布特征以及污染物的来源。研究发现, 2006~2014年南京 都市圈对流层NO2柱浓度呈现出逐年增长的趋势和冬高夏低的季节变化特征;研究区对流层NO2污染物主要来自两个方面:大气气流的输送作 用影响了研究区对流层NO2季节性变化;不同的土地利用类型影响了南京都市圈的对流层NO2柱浓度。
对流层NO2 HYSPLIT模型 时空变化 OMI Ozone Monitoring Instrument tropospheric NO2 HYSPLIT model temporal and spatial variation 
大气与环境光学学报
2016, 11(3): 182

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!