作者单位
摘要
厦门大学 电子科学与技术学院 微纳光电子研究室,福建 厦门 361005
提出了一种新的Si衬底上GaN微盘谐振腔的制备方式,避免了传统Si基GaN器件中晶体质量较差以及外延层较厚对器件性能的影响。本工作中GaN的外延生长使用蓝宝石衬底,随后将外延层转移至硅衬底上进行微盘谐振腔的制备。外延生长时靠近衬底侧的GaN富缺陷层可使用减薄抛光的方式去除,并且通过简单湿法刻蚀二氧化硅牺牲层即可实现GaN微盘与Si衬底之间的空气间隙结构。基于较好的晶体质量与低损耗的谐振腔,实现了高Q值的Si基GaN微盘谐振腔低阈值激射,阈值能量低至5.2 nJ/pulse,Q值最高为10 487。同时,器件具有较好的温度稳定特性,在100 ℃环境下也能维持低阈值激射,为大规模单片硅基光子集成提供了高性能的激光源。
半导体器件与技术 微腔 氮化镓  高品质因子 低阈值 高温工作 Semiconductor devices and technology Microcavity GaN Si High Q factor Low threshold High temperature operation 
光子学报
2022, 51(2): 0251204
作者单位
摘要
厦门大学 电子科学与技术学院(国家示范性微电子学院),厦门 361005
垂直腔面发射激光器凭借阈值低、发散角小、调制速率高以及输出光束呈圆斑对称等特点,迅速成为当下半导体激光器的研究热点。氮化镓(GaN)材料是制造紫外到绿光波段光电子器件的理想材料,经过四十余年的研究,蓝光和绿光LED在照明、显示等领域得到广泛应用。技术含量更高的激光器件也已进入了应用的快车道,即将覆盖照明、通信、投影显示、光存储、医疗、微型原子钟及传感器等场景。铝镓氮(AlGaN)是GaN基半导体材料的重要代表之一,其禁带宽度可在3.4 eV(GaN)到6.2 eV(AlN)范围内连续可调,对应波长可覆盖200~365 nm波段,是制造从近紫外波段到深紫外波段紫外垂直腔面发射激光器的理想材料。而铝镓氮(AlGaN)垂直腔面发射激光器经过近20年来的发展,如今已成为半导体激光器的研究热点之一。首先回顾了GaN基垂直腔面发射激光器的发展历史,简要介绍了其在各个波段的主要应用场景;然后介绍蓝光、绿光及紫外垂直腔面发射激光器的研究进展;最后分析了光注入和电注入紫外垂直腔面发射激光器发展过程中的挑战和困难,并介绍了改进和优化的策略。
半导体器件与技术 垂直腔面发射激光器 氮化物 紫外 光电子器件 激光器 AlGaN Semiconductor devices and technology Vertical-cavity surface emitting laser Nitride Ultraviolet Optoelectronic Device Laser AlGaN 
光子学报
2022, 51(2): 0251203
作者单位
摘要
1 河北工业大学 电子信息工程学院, 天津 300401
2 杭州之江开关股份有限公司, 浙江 杭州 311200
3 燕山大学 电气工程学院, 河北 秦皇岛 066004
基于当前的COB封装LED芯片, 分析了芯片的热阻模型, 推导出发光结在理想温度下工作时的基板温度。针对大功率LED存在的散热问题, 基于课题组双进双出射流冲击水冷散热系统, 设计了一种模糊控制器, 选取温度变化和温度变化率为控制输入量, 并对各控制输入量的范围设定进行了说明。根据设计的控制器进行程序编写, 下载到控制芯片中进行实际验证, 在20℃环境温度下, 芯片基板温度最终维持在35.5~36.5℃之间, 保证了灯具正常、稳定工作, 为大功率LED散热系统提供了一种控制器设计方案, 具有一定的实际意义。
半导体器件与技术 模糊控制 射流水冷 大功率LED semiconductor devices and technology fuzzy control cooling water jet high power LED 
应用光学
2015, 36(4): 612
作者单位
摘要
燕山大学 电气工程学院, 河北 秦皇岛 066004
针对大功率LED存在的散热问题,提出了一种双进双出射流水冷散热器,将其与现有射流水冷散热器的散热效果进行对比,并设计了基于射流水冷的大功率LED散热系统实验平台.在散热系统全功率工作条件下,LED底部温度分布均匀,并且保持在32℃左右,表明散热系统具有良好的均温性能和散热性能,满足大功率LED的散热要求.利用极差分析法,得到了水泵和风扇对系统散热效果的影响权重,优化了散热系统的工作功率,得到一组较优的控制水泵和风扇功率的脉冲宽度调制信号.在该组控制信号下,降低了散热系统的功耗,同时保证了系统散热效果,达到了节能目的.
半导体器件与技术 水冷散热系统 大功率LED 数值分析 射流冲击 Semiconductor devices and technology Water cooling systems Light emitting diodes Numerical analysis Jets 
光子学报
2014, 43(7): 0723003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!