Author Affiliations
Abstract
Department of Engineering, The University of Massachusetts at Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA (Richard.Soref@umb.edu)
A theoretical design is presented for a 1×M wavelength-selective switch (WSS) that routes any one of N incoming wavelength signals to any one of M output ports. This planar on-chip device comprises a 1×N demultiplexer, a group of N switching “trees” actuated by electro-optical or thermo-optical means, and an M-fold set of N×1 multiplexers. Trees utilize 1×2 switches. The WSS insertion loss is proportional to [log2 (M+N+1)]. Along with cross talk from trees, cross talk is present at each cross-illuminated waveguide intersection within the WSS, and there are at most N 1 such crossings per path. These loss and cross talk properties will likely place a practical limit of N=M=16 upon the WSS size. By constraining the 1×2 switching energy to 1 fJ/bit, we find that resonant, narrowband 1×2 switches are required. The 1×2Multiplexing Optical switching devices Subsystem integration and techniques 
Photonics Research
2017, 5(4): 04000340
Author Affiliations
Abstract
1 Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore 138634, Singapore
2 Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
Silicon photonic integrated circuits for telecommunication and data centers have been well studied in the past decade, and now most related efforts have been progressing toward commercialization. Scaling up the silicon-on-insulator (SOI)-based device dimensions in order to extend the operation wavelength to the short mid-infrared (MIR) range (2–4 μm) is attracting research interest, owing to the host of potential applications in lab-on-chip sensors, free space communications, and much more. Other material systems and technology platforms, including silicon-on-silicon nitride, germanium-on-silicon, germanium-on-SOI, germanium-on-silicon nitride, sapphire-on-silicon, SiGe alloy-on-silicon, and aluminum nitride-on-insulator are explored as well in order to realize low-loss waveguide devices for different MIR wavelengths. In this paper, we will comprehensively review silicon photonics for MIR applications, with regard to the state-of-the-art achievements from various device demonstrations in different material platforms by various groups. We will then introduce in detail of our institute’s research and development efforts on the MIR photonic platforms as one case study. Meanwhile, we will discuss the integration schemes along with remaining challenges in devices (e.g., light source) and integration. A few application-oriented examples will be examined to illustrate the issues needing a critical solution toward the final production path (e.g., gas sensors). Finally, we will provide our assessment of the outlook of potential future research topics and engineering challenges along with opportunities.
(130.0130) Integrated optics (130.3120) Integrated optics devices (130.6622) Subsystem integration and techniques. 
Photonics Research
2017, 5(5): 05000417
Author Affiliations
Abstract
Silicon photonics has become one of the major technologies in this very information age. It has been intensively pursued by researchers and entrepreneurs all over the world in recent years. Achieving the large scale silicon photonic integration, particularly monolithic integration, is the final goal so that high density data communication will become much cheaper, more reliable, and less energy consuming. Comparing with the developed countries, China may need to invest more to develop top down nanoscale integration capability (more on processing technology) to sustain the development in silicon photonics and to elevate its own industry structure.
250.5300 Photonic integrated circuits 130.3120 Integrated optics devices 130.6622 Subsystem integration and techniques 
Chinese Optics Letters
2013, 11(1): 012501

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!