作者单位
摘要
1 河南工程学院材料工程学院河南省电子陶瓷材料与应用重点实验室,河南 郑州 451191
2 南开大学物理科学学院,天津 300071
3 郑州卓而泰新材料科技有限公司,河南 郑州 450016
双晶匹配电光Q开关能够利用晶体的最大有效电光系数,大幅降低半波电压,具有重要的应用价值,但其消光比易受多种因素的制约。系统分析了影响双晶电光Q开关消光比的各个因素,建立了包含光学不均匀性、晶向偏离、两晶体温度变化、长度偏差及温差等参数的系列相位延迟公式,由此分析计算了各因素的容差范围。结果表明:光学不均匀性、两晶体的长度偏差和温差是影响消光比的关键因素;当仅考虑单一变量时,消光比与此变量的平方成反比;同时,晶体长度对消光比也有显著影响,当光学不均匀性、晶向偏离、温差一定时,消光比与晶体长度的平方成反比。制备了两种不同尺寸的双晶钽酸锂电光Q开关,实验证实长度较短的Q开关的双晶匹配质量更好,消光比更高,其消光比主要受光学不均匀性的限制。研究结果可为高消光比双晶电光Q开关的研制提供重要指导。
激光光学 光开关器件 电光调Q 双晶匹配 消光比 钽酸锂晶体 
中国激光
2024, 51(8): 0801002
Author Affiliations
Abstract
Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
The digital micro-mirror device (DMD)-based optical switch has the advantages of high-speed channels reallocation, miniaturization, stability, and large capacity for short reach optical communication in the datacenter. However, thermal turbulent atmosphere in the datacenter would cause perturbations and channel crosstalk for the optical switch. The self-healing optical beams such as the Bessel beams have the non-diffraction property to mitigate the turbulence issue. Here, we propose and demonstrate a Bessel beams enabled DMD-based optical switch to improve the stability and performance of optical communication in turbulent atmosphere. We statistically characterize the beam wanders of the Gaussian and Bessel beams in turbulent atmosphere at temperatures of 60°C and 80°C. We build the two-channel optical switch communication system and measure the bit error rate of the 15 Gbit/s on–off keying signals transmitted by the Gaussian and Bessel beams at temperatures of 60°C and 80°C, respectively. The optical switch using the Bessel beams shows lower bit error rates with weaker fluctuations compared with the Gaussian beams. The DMD-based optical switch using the Bessel beams has the potential for practical optical communication applications in the datacenter.
060.4510 Optical communications 130.4815 Optical switching devices 280.7060 Turbulence 
Chinese Optics Letters
2019, 17(9): 090602
作者单位
摘要
上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
全光调制器在全光信号处理和通信等全光应用中起着重要的作用。主要研究了基于MoS2-PVA薄膜实现的全光调制器。此外, 也验证了WSe2-PVA薄膜也可实现全光调制。该器件利用热光效应, 结合偏振干涉实现了全光调制, 得到了长时间稳定输出的调制信号。将980 nm的脉冲信号作为控制光, MoS2或WSe2吸收光产生热量, 使薄膜的折射率发生改变, 从而改变1 550 nm信号光的偏振态, 实现980 nm控制光对1 550 nm光的调制。得到的MoS2-PVA薄膜全光调制器的上升沿时间为526 μs。
全光器件 非线性光学材料 光开关器件 相位调制 all-optical devices nonlinear optical materials optical switching devices phase modulation 
红外与激光工程
2019, 48(1): 0103003
Author Affiliations
Abstract
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Optical delay lines (ODLs) are one of the key enabling components in photonic integrated circuits and systems. They are widely used in time-division multiplexing, optical signal synchronization and buffering, microwave signal processing, beam forming and steering, etc. The development of integrated photonics pushes forward the miniaturization of ODLs, offering improved performances in terms of stability, tuning speed, and power consumption. The integrated ODLs can be implemented using various structures, such as single or coupled resonators, gratings, photonic crystals, multi-path switchable structures, and recirculating loop structures. The delay tuning in ODLs is enabled by either changing the group refractive index of the waveguide or changing the length of the optical path. This paper reviews the recent development of integrated ODLs with a focus on their abundant applications and flexible implementations. The challenges and potentials of each type of ODLs are pointed out.
130.3120 Integrated optics devices 230.5750 Resonators 130.4815 Optical switching devices 070.1170 Analog optical signal processing 
Chinese Optics Letters
2018, 16(10): 101301
Author Affiliations
Abstract
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
The all-optical approach plays an important role in ultrafast all-optical signal processing, and the all-fiber scheme has a wide application in optical communications. In this letter, we investigate an all-optical modulator using few-layer molybdenum disulfide (MoS2)-polyvinyl alcohol (PVA) thin films based on the thermo-optic effect and obtain a long-time stable modulated output by applying polarization interference. By absorbing the injected 980 nm pump (control light), MoS2 generates heat, changes the refractive index of MoS2, and modulates the polarization of light. The obtained thermal all-optical modulator has a rise time of 526 μs.
230.1150 All-optical devices 160.4330 Nonlinear optical materials 130.4815 Optical switching devices 
Chinese Optics Letters
2018, 16(2): 020003
作者单位
摘要
ITMO University,Saint-Petersburg 197101,Russia
本文提出了一种光控太赫兹开关, 该开关采用覆盖单层石墨烯的十字金属谐振器超表面。利用石墨烯表面电导率模型和有限元法计算了这种复合结构的光谱特性。模拟结果表明, 在02 W/mm2的光泵浦后, 传输谱(调制深度为368%, Q-因子为250)出现了窄带共振衰减现象。另外, 这种衰减的调制深度可以通过改变泵浦强度微调节。因此, 光学可调谐太赫兹开关的设计将有助于太赫兹通信应用的功能组件开发。
太赫兹 石墨烯 光开关器件 terahertz graphene optical switching devices 
中国光学
2018, 11(2): 166
Author Affiliations
Abstract
Department of Engineering, The University of Massachusetts at Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA (Richard.Soref@umb.edu)
A theoretical design is presented for a 1×M wavelength-selective switch (WSS) that routes any one of N incoming wavelength signals to any one of M output ports. This planar on-chip device comprises a 1×N demultiplexer, a group of N switching “trees” actuated by electro-optical or thermo-optical means, and an M-fold set of N×1 multiplexers. Trees utilize 1×2 switches. The WSS insertion loss is proportional to [log2 (M+N+1)]. Along with cross talk from trees, cross talk is present at each cross-illuminated waveguide intersection within the WSS, and there are at most N 1 such crossings per path. These loss and cross talk properties will likely place a practical limit of N=M=16 upon the WSS size. By constraining the 1×2 switching energy to 1 fJ/bit, we find that resonant, narrowband 1×2 switches are required. The 1×2Multiplexing Optical switching devices Subsystem integration and techniques 
Photonics Research
2017, 5(4): 04000340
Author Affiliations
Abstract
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
A novel scheme for the design of an ultra-compact and high-performance optical switch is proposed and investigated numerically. Based on a standard silicon (Si) photonic stripe waveguide, a section of hyperbolic metamaterials (HMM) consisting of 20-pair alternating vanadium dioxide (VO2)/Si thin layers is inserted to realize the switching of fundamental TE mode propagation. Finite-element-method simulation results show that, with the help of an HMM with a size of 400 nm×220 nm×200 nm (width×height×length), the ON/OFF switching for fundamental TE mode propagation in an Si waveguide can be characterized by modulation depth (MD) of 5.6 dB and insertion loss (IL) of 1.25 dB. It also allows for a relatively wide operating bandwidth of 215 nm maintaining MD>5 dB and IL<1.25 dB. Furthermore, we discuss that the tungsten-doped VO2 layers could be useful for reducing metal-insulator-transition temperature and thus improving switching performance. In general, our findings may provide some useful ideas for optical switch design and application in an on-chip all-optical communication system with a demanding integration level.
Optical switching devices Integrated optics devices Metamaterials 
Photonics Research
2017, 5(4): 04000335
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2 MIT Microphotonics Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Reduction of modulator energy consumption to 10 fJ/bit is essential for the sustainable development of communication systems. Lumped modulators might be a viable solution if instructed by a complete theory system. Here, we present a complete analytical electro-optic response theory, energy consumption analysis, and eye diagrams on absolute scales for lumped modulators. Consequently the speed limitation is understood and alleviated by single-drive configuration, and comprehensive knowledge into the energy dependence on structural parameters significantly reduces energy consumption. The results show that silicon modulation energy as low as 80.8 and 21.5 fJ/bit can be achieved at 28 Gbd under 50 and 10 Ω impedance drivers, respectively. A 50 Gbd modulation is also shown to be possible. The analytical models can be extended to lumped modulators on other material platforms and offer a promising solution to the current challenges of modulation energy reduction.
Modulators Optical switching devices Integrated optics devices 
Photonics Research
2017, 5(2): 02000134
Author Affiliations
Abstract
1 State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Engineering Department, University of Massachusetts, Boston, Massachusetts 02125, USA
3 e-mail: qiuciyuan@sjtu.edu.cn
4 e-mail: yikaisu@sjtu.edu.cn
We propose and experimentally demonstrate a 2×2 thermo-optic (TO) crossbar switch implemented by dual photonic crystal nanobeam (PCN) cavities within a silicon-on-insulator (SOI) platform. By thermally tuning the refractive index of silicon, the resonance wavelength of the PCN cavities can be red-shifted. With the help of the ultrasmall mode volumes of the PCN cavities, only 0.16 mW power is needed to change the switching state. With a spectral passband of 0.09 nm at the 1583.75 nm operation wavelength, the insertion loss (IL) and crosstalk (CT) performances were measured as IL(bar)= 0.2 dB, CT(bar)= 15 dB, IL(cross)= 1.5 dB, and CT(cross)= 15 dB. Furthermore, the thermal tuning efficiency of the fabricated device is as high as 1.23 nm/mW.
Integrated optics devices Photonic crystals Optical switching devices 
Photonics Research
2017, 5(2): 02000108

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!