李海燕 1,2旷峰华 2吴昊龙 1,2刘小根 1,2[ ... ]万德田 1,2,*
作者单位
摘要
1 1.中国国检测试控股集团股份有限公司, 北京 100024
2 2.绿色建材国家重点实验室, 中国建筑材料科学研究总院, 北京 100024
为研究以高膨胀系数的陶瓷为涂层, 低膨胀系数的陶瓷为基体的预应力陶瓷的高温力学性能, 本工作以氧化锆为涂层, 氧化铝为基体, 制得表层为拉应力的“三明治”结构ZrO2-Al2O3(简称ZcAs)预应力陶瓷。同时选用基体与涂层截面比值相近的Al2O3-ZrO2(简称AcZs)预应力陶瓷、纯ZrO2和纯Al2O3陶瓷为参照样。结合不同温度下的弯曲强度测试结果及维氏压痕结果, 阐明预应力的存在形式及其对裂纹扩展行为的影响, 并研究预应力的温度依赖性。结果表明: ZcAs预应力陶瓷的表层受拉应力, 基体受压应力; 而AcZs预应力陶瓷的表层受压应力, 基体受拉应力。由于拉应力能够促进裂纹扩展, 而压应力能够抑制裂纹扩展, 因此室温下, ZcAs的强度比纯Al2O3陶瓷降低13.2%, 而AcZs的强度比纯ZrO2陶瓷提高25.0%。此外, 无论表层是拉应力还是压应力, 都随着温度升高而降低, 这主要归因于高温导致的预应力松弛。
ZrO2-Al2O3预应力陶瓷 拉应力 弯曲强度 温度依赖性 ZrO2-Al2O3 pre-stressed ceramics tensile stress flexural strength temperature dependence 
无机材料学报
2023, 38(11): 1265
作者单位
摘要
黑龙江大学 电子工程学院,哈尔滨 150080
采用稳态光致发光(PL)光谱技术,结合光谱学分析方法,对CH3NH3PbBr3(MAPbBr3)晶体粉末的功率密度和温度相关的光物理特性进行了研究。在405 nm连续激光激发下,PL发射峰位在560 nm,半高全宽为123 meV。光谱实验结果表明,通过对功率密度与PL强度进行拟合,其斜率为1.10,这很好地证明了单光子吸收的存在。在80~310 K温度范围内,MAPbBr3晶体粉末的荧光峰位表现出不同的温度依赖行为。随着温度的升高,激子-声子相互作用的增强,峰宽均匀展宽,积分强度逐渐减小。PL发射峰位在80~145 K出现蓝移。在150 K附近PL发射峰出现跳跃,而当温度超过150 K时,光谱的峰位几乎保持不变。这些温度相关的PL行为主要是由于在150 K左右发生了从正交相到四方相的结构相变。此外,从温度相关的PL实验数据拟合得到激子结合能约为49.8 meV和纵向光学声子能量约为60.4 meV。
钙钛矿 MAPbBr3 晶体粉末 温度依赖 光致发光 perovskite MAPbBr3 crystalline powder temperature-dependence photoluminescence 
强激光与粒子束
2023, 35(11): 119001
作者单位
摘要
1 福州大学 化学学院, 福建 福州  350002
2 中国科学院 福建物质结构研究所, 福建 福州  350002
3 福建省光电信息科技创新实验室, 福建 福州  350108
LuAG∶Ce3+是一种高效稳定的商业化绿色荧光转换材料。我们采用真空烧结方法制备了一系列掺杂Ga3+/Sc3+的LuAG∶Ce3+透明陶瓷样品,并研究了掺杂离子及掺杂浓度对其晶体结构、荧光性能及热稳定性能的影响。在450 nm蓝光激发下,Ga3+和Sc3+的掺杂均使LuAG∶Ce3+的发射谱发生蓝移。其中,Ga3+离子具有更好的蓝移效果,在掺杂浓度从0%提升至20%时,发射光谱从536 nm蓝移至506 nm。与此同时,两种离子掺杂均降低了绿光陶瓷的热稳定性能。但通过变温发射谱及量子产率表征发现,Ga3+离子对陶瓷热性能的影响比Sc3+离子的小。将两个系列的陶瓷样品封装在3 W的蓝光LED芯片上,获得了具有不同光色的绿光光源。其中,Ga3+系列陶瓷展现出了更优异的光色可调性,并且维持着更高的光效。综上,我们认为Ga3+离子掺杂的LuAG∶Ce3+陶瓷是一种具有较大潜力的绿色荧光转换材料。
LuAG 透明陶瓷 绿色荧光转换材料 变温发射谱 LuAG transparent ceramics green color converter temperature-dependence spectrum 
发光学报
2022, 43(12): 1928
作者单位
摘要
1 厦门大学近海海洋环境科学国家重点实验室,厦门大学海洋与地球学院,福建 厦门 361005
2 马萨诸塞州立大学波士顿分校环境学院,马萨诸塞州波士顿 02125,美国

关于温度(T)对纯水吸收系数[awλ)]的影响,文献中有许多报道,其中有些报道并不一致。在这项研究中,通过对温度从7 ℃到51 ℃变化的高浑浊水体的遥感反射比[Rrsλ)]的测量,分析了Rrs光谱在740~850 nm波段的形状变化,特别是Rrs与最近Rottgers等在实验室测量所揭示的由温度变化引起的awλ)光谱形状变化的关系。分析发现Rrs光谱在740~850 nm波段的形状扭曲可以很好地由温度变化引起的awλ)光谱的形状扭曲来解释。由于在近红外(NIR)波段Rrs光谱的形状主要由awλ)光谱来决定,因此该结果的一致性提供了对从实验室测量获得的740~850 nm波段awλ)数值与温度呈相反依赖性的独立验证。

大气光学 纯水 吸收系数 温度依赖性 近红外 
光学学报
2022, 42(18): 1801007
作者单位
摘要
1 吉林大学 电子科学与工程学院,吉林 长春 130012
2 长春大学 电子信息工程学院,吉林 长春 130022
为了缩小光谱仪体积使之适用于**卫星等领域,本文将胶体量子点作为滤光材料,研究了CdSe胶体量子点滤光片的光学特性。本文采用热注入法合成出了高质量的CdSe胶体量子点,经过对苯二胺消光处理制备成CdSe胶体量子点滤光片。利用透射电子显微镜(TEM)进行样品形貌结构的表征及粒径尺寸的测量,并分别在不同温度下进行了紫外-可见吸收测量和紫外-可见透过率测量。实验表明,在室温情况下,CdSe胶体量子点薄膜的吸收和透过率均随粒径尺寸的增加而增加;在给定粒径尺寸的情况下,CdSe胶体量子点薄膜吸收与透过率曲线的第一激子吸收峰峰位随温度升高发生红移,CdSe胶体量子点薄膜吸收曲线温度每增加10 K红移不超过1 nm,且半峰宽增加;此外,经反复实验验证CdSe胶体量子点滤光片的稳定性及可调谐特性,证实其适合作为截止滤光片。上述结果表明,CdSe 胶体量子点滤光片在微型光谱仪方面具有良好的应用价值。
CdSe胶体量子点 薄膜滤光片 尺寸依赖性 温度依赖性 CdSe colloidal quantum dots thin film filters size dependence temperature dependence 
中国光学
2021, 14(1): 163
王虎 1,2,3鹿建 1,3王中阳 1,2,3
作者单位
摘要
1 中国科学院上海高等研究院 宏观量子效应与现象研究中心,  上海 201210
2 上海科技大学 物质科学与技术学院,  上海 201210
3 中国科学院大学, 北京 100049
通过化学气相沉积法(CVD)在云母基底上制备得到CsPbBr3微米棒, 并使用扫描电子显微镜(SEM)、X射线衍射(XRD)对样品形貌和晶体结构进行表征。采用变温(10~290 K)荧光光谱研究了CsPbBr3激子发光的温度依赖特性。实验发现, 在室温下CsPbBr3微米棒有两个发光峰, 分别为位于2.357 eV、半宽为 52 meV的自由激子发光及能量位于2.298 eV、半宽为 73 meV 的束缚激子发光。从10 K开始, 随着温度升高, 自由激子的峰位能量单调蓝移, 束缚激子的峰位能量在120 K 之前单调蓝移, 其后趋于平缓。且激子峰半高宽随温度升高而逐渐增大。这种变温荧光特性主要是由于激子和纵向光学声子(LO)的相互作用引起的。本文有助于进一步理解CsPbBr3光物理特性, 对未来高性能光电子器件研究具有指导意义。
钙钛矿 激子 声子 变温荧光 perovskite exciton phonon temperature dependence photoluminescence 
发光学报
2021, 42(6): 849
Author Affiliations
Abstract
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
We report a method to reduce the detection delay temperature drift for a single-photon detector based on the avalanche photodiode (SPAD). Both the SPAD and the comparator were temperature stabilized, resulting in an ultra-low temperature drift at 0.01 ps/°C. A stable time deviation as 0.15 ps over 1000 s was realized, while the ambient temperature fluctuated rapidly from 24°C to 44°C. To the best of our knowledge, this is the first report on the ultra-stable delay SPAD detector in the case of rapid increase or decrease of ambient temperature. It is helpful to improve the stability of onboard detectors for optical laser time transfer between ground and space.
avalanche photodiodes laser ranging single-photon detection stability temperature dependence 
Chinese Optics Letters
2021, 19(8): 082502
作者单位
摘要
1 河池学院 化学与生物工程学院, 广西 河池 546300
2 长春工业大学 材料科学与工程学院, 吉林 长春 130012
NaBiF4作为一种新型的上转换发光基质材料,具有优异的发光性能。本文以聚乙烯吡咯烷酮(PVP)作为表面活性剂,通过溶剂热法成功制备出水溶性NaBiF4∶Yb3+/Er3+/Mn2+上转换微米晶,并对其晶相、形貌及发光性能进行了表征。在980 nm激发光条件下,NaBiF4∶Yb3+/Er3+/Mn2+可发射出强烈的绿色发光,且发光强度随Mn2+掺杂浓度的提高呈现先增强后减弱的趋势,表现出优异的上转换发光性能。同时,NaBiF4∶Er3+/Yb3+/Mn2+上转换发光对温度具有良好的依赖性,有望成为潜在的温度传感器材料。
上转换发光 PVP表面活性剂 温度依赖性 upconversion luminescence NaBiF4 NaBiF4 PVP surfactant temperature-dependence 
发光学报
2020, 41(9): 1122
作者单位
摘要
1 中国科学院光电研究院 中国科学院定量遥感信息技术重点实验室,北京 100094
2 中国科学院大学,北京 100049
3 中国科学院安徽光学精密机械研究所 中国科学院环境光学与技术重点实验室,安徽 合肥 230031
CO2和CO被称为燃烧效率指示性气体, 燃烧流场中CO2的精确测量对工业燃烧过程的节能减排和发动机燃烧状态诊断等都具有重要意义.研究CO2气体的高温光谱参数, 包括:线强、自加宽系数、温度系数, 可提高燃烧过程中CO2浓度的测量精度和可靠性.为了获得可用于燃烧诊断的CO2吸收线的高温光谱参数, 基于可调谐半导体激光吸收光谱技术设计了一套最高温度可达2073 K的精确控温控压气体光谱参数测量系统.采用该系统开展了CO2 R(50e)吸收线(中心频率为5007.787 cm-1)的高温光谱测量实验, 获得了温度范围1212~1873 K内多个压强下的纯CO2气体的大量高温吸收光谱, 经热辐射背景扣除、基线拟合、时频转换、多线组合非线性最小二乘法拟合等数据处理过程, 得到温度范围1212~1873 K内CO2 R(50e)吸收线的线强、自加宽系数及温度系数, 其中线强不确定度<1.5%, 自加宽系数不确定度小于4.5%.这些参数是对现有数据库的补充和完善, 对燃烧诊断中的CO2浓度检测有很大帮助, 能够满足燃烧过程中CO2浓度精确反演的需求.
可调谐半导体激光吸收光谱 高温光谱 线强 自加宽系数 温度系数 tunable diode laser absorption spectroscopy (TDLAS high-temperature spectrum intensity self-broadening full-width temperature-dependence exponent 
红外与毫米波学报
2019, 38(3): 358
作者单位
摘要
哈尔滨工程大学自动化学院, 黑龙江 哈尔滨 150001
针对无骨架光纤环的保偏光纤陀螺中横向磁场误差的温度依赖性研究发现,保偏光纤线双折射以及Verdet常数固有的温度依赖性可以导致横向磁场误差随着温度变化而变化。利用琼斯矩阵方法推导了保偏光纤陀螺横向磁场误差与温度的关系,并进行了实验验证。实验结果表明,对于长度为1 km,半径为6 cm,光纤线双折射为2027 rad·m -1,最大扭转率为0.382 rad·m -1的无骨架光纤环,在 1 mT横向磁场以及-40~60 ℃温度场作用下,光纤陀螺的横向磁场误差由26.51 (°)·h -1 增加到30.43 (°)·h -1
光纤光学 光纤陀螺 琼斯矩阵 磁场误差 法拉第效应 温度依赖性 
光学学报
2018, 38(1): 0106006

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!