柯熙政 1,2,3,*赵锦 1
作者单位
摘要
1 西安理工大学自动化与信息工程学院,陕西 西安 710048
2 陕西省智能协同网络军民共建重点实验室,陕西 西安 710048
3 陕西理工大学物理与电信工程学院,陕西 汉中 723001
针对远距离无线光通信中光束跟踪受长距离大气传输不确定因素影响大的问题,提出了一种利用双反射镜的无线光系统结构。针对双反射镜到接收端的短轴跟踪控制设计了滤光片转盘模块,通过给反射光斑施加频率扰动的方式来实现对相机探测面上双光斑的辨别,并以探测面上双光斑的重叠情况作为判别光束对准的依据。对于存在偏移的重叠双光斑图像,提出多光斑/重叠光斑中心提取的思路,利用最小二乘法椭圆拟合实现重叠光斑的分割,并对无重叠、较少重叠以及较多重叠三种情况下的光斑图像进行分割实验。研究结果显示,在光斑重叠的场景下,光斑中心定位与实际位置之间的标准差小于0.5 pixel,因此所采用的算法在重叠光斑的分离方面具有很好的效果。
无线光通信 二维反射镜 双光斑重叠检测 光束对准 
光学学报
2023, 43(24): 2406003
作者单位
摘要
1 中国科学院自动化研究所,北京 100190
2 中国科学院上海光学精密机械研究所高功率激光物理联合实验室,上海 201800
对大型激光装置主放远场自动准直的图像处理进行优化研究,主要包括远场基准计算和远场光斑中心计算两个方面。为了进一步提高图像处理的稳定性和计算效率,在远场基准计算和远场光斑中心计算时对处理图像的区域施加约束。在远场基准计算时,针对transport spatial filter(TSF)图像和cavity spatial filter(CSF)图像,分别采用两个处理流程。在远场光斑中心计算时,对TSF图像和CSF图像,采用统一的处理流程,采用聚类方法计算远场光斑中心。实验结果表明所提图像处理方法具有有效性。
光路自动准直 远场准直 图像处理 高功率激光器 神光II升级装置 
激光与光电子学进展
2023, 60(10): 1010022
Author Affiliations
Abstract
1 Laboratory of Micro-Nano Optoelectronic Materials and Devices, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 National Center for Protein Science Shanghai, Shanghai 200120, China
4 Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
A stimulated emission depletion is capable of breaking the diffraction limit by exciting fluorescent molecules with a solid Gaussian beam and quenching the excited molecules with another donut beam through stimulated emission. The coincidence degree of these two beams in three dimensions will significantly influence the spatial resolution of the microscope. However, the conventional alignment approach based on raster scanning of gold nanoparticles by the two laser beams separately suffers from a mismatch between fluorescence and scattering modes. To circumvent the above problems, we demonstrate a fast alignment design by scanning the second beam over the fabricated sample, which is made of aggregation-induced emission (AIE) dye resin. The relative positions of solid and donut laser beams can be represented by the fluorescent AIE from the labeled spots in the dye resin. This design achieves ultra-high resolutions of 22 nm in the x/y relative displacement and 27 nm in the z relative displacement for fast spatial matching of the two laser beams. This study has potential applications in scenarios that require the spatial matching of multiple laser beams, and the field of views of different objectives, for example, in a microscope with high precision.
nanophotonics stimulated emission depletion microscope aggregation-induced emission dual-beam alignment 
Chinese Optics Letters
2022, 20(11): 113601
Author Affiliations
Abstract
National Engineering Research Centre for Diffraction Gratings Manufacturing and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Jilin 130033, China
To obtain a good interference fringe contrast and high fidelity, an automated beam iterative alignment is achieved in scanning beam interference lithography (SBIL). To solve the problem of alignment failure caused by a large beam angle (or position) overshoot exceeding the detector range while also speeding up the convergence, a weighted iterative algorithm using a weight parameter that is changed linearly piecewise is proposed. The changes in the beam angle and position deviation during the alignment process based on different iterative algorithms are compared by experiment and simulation. The results show that the proposed iterative algorithm can be used to suppress the beam angle (or position) overshoot, avoiding alignment failure caused by over-ranging. In addition, the convergence speed can be effectively increased. The algorithm proposed can optimize the beam alignment process in SBIL.
Piecewise linear weighted iterative algorithm beam alignment scanning beam interference lithography (SBIL) overshoot suppression convergence speed 
Photonic Sensors
2019, 9(4): 344
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所国家光栅制造与应用工程技术研究中心, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了提升扫描干涉场曝光光束对准精度,保证制作的光栅掩模槽形的质量,建立了曝光光束对准误差模型,利用模型对光束对准误差进行了分析。同时为了满足系统对光束重叠精度的要求,设计研制了光束自动对准系统,并对曝光光束进行了对准实验。分析结果表明,当光束存在较大对准误差时,光栅基底表面曝光对比度大幅下降,而且由于采用步进扫描的曝光方式,光刻胶表面出现了各处曝光不均匀的现象,影响光栅掩模槽形的质量。设计的对准系统可以对光束角度与位置进行对准调节,系统整体表现出良好的收敛性能,多步调节后可使光束位置对准精度优于10 μm,光束角度对准精度优于9 μrad。这样的曝光光束对准精度可以满足系统要求,达到了预期的设计目的。
光学设计 光栅 扫描干涉场曝光 光束对准 曝光对比度 位置解耦 角度解耦 
光学学报
2017, 37(7): 0722003
Author Affiliations
Abstract
1 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, No. 390, Qing he Road, Jia ding District, Shanghai, China, 201800
2 University of Chinese Academy of Sciences, No. 19, Yu quan Road, Shi jing shan District, Beijing, China, 100049
Laser beam alignment is very important for high-power laser facility. Long laser path and large-aperture lens for alignment are generally used, while the proposed alignment system with a wedge by far-field sampling technique reduces both space and cost requirements. General alignment system for large-aperture laser beam is long in distance and large in volum because of taking near-field sampling technique. With the development of laser fusion facilities, the space for alignment system is limited. A new alignment system for large-aperture laser beam is designed to save space and reduce operating costs. The new alignment for large-aperture laser beam with a wedge is based on far-field sampling technique. The wedge is placed behind the spatial filter to reflect some laser beam as signal light for alignment. Therefore, laser beam diameter in alignment system is small, which can save space for the laser facility. Comparing to general alignment system for large-aperture laser beam, large-aperture lenses for near-field and far-field sampling, long distance laser path are unnecessary for proposed alignment system, which saves cost and space greatly. This alignment system for large-aperture laser beam has been demonstrated well on the Muliti-PW Facility which uses the 7th beam of the SG-Ⅱ Facility as pump source. The experimental results indicate that the average near-field alignment error is less than 1% of reference, and the average far-filed alignment error is less than 5% of spatial filter pinhole diameter, which meet the alignment system requirements for laser beam of Multi-PW Facility.
laser technique beam alignment far-field large-aperture beam near field imaging system 
Collection Of theses on high power laser and plasma physics
2016, 14(1): 10016
Author Affiliations
Abstract
1 University of Chinese Academy of Sciences, No.19 Yuquan Road, Shijingshan District, Beijing 100049, China
2 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Key Laboratory of High Power Laser and Physics, No. 390, Qing he Road, Shanghai 201800, China
3 China Academy of Engineering Physics, Shanghai Institute of Laser Plasma, No. 390, Qing he Road, Shanghai 201800, China
Laser beam far-field alignment as well as frequency-doubling and frequency-tripling crystal adjustment is very important for high-power laser facility. Separate systems for beam and crystal alignment are generally used while the proposed approach by off-axial grating sampling share common optics for these two functions, reducing both space and cost requirements. This detection system has been demonstrated on the National Laser Facility of Israel. The experimental results indicate that the average far-field alignment error is <5% of the spatial filter pinhole diameter, average autocollimation angle error of crystals is <10 μrad, and average frequency-tripling conversion efficiency is 69.3%, which meet the alignment system requirements on the beam direction and crystals.
laser technique far-field beam alignment crystal alignment grating frequency conversion 
Collection Of theses on high power laser and plasma physics
2016, 14(1): 036108
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所国家光栅制造与应用工程技术研究中心, 吉林 长春 130033
2 中国科学院大学大珩学院, 北京 100049
光束自动对准技术是扫描干涉场曝光系统中的关键技术之一,两曝光光束位置与角度的重合程度直接影响所制作光栅掩模的槽型质量。针对光束对准过程中光束调整的两个运动维度之间存在相互耦合的情况,推导了存在耦合时对准算法的收敛条件,并分析了光路中反射镜与解耦平面之间存在的装调误差对对准性能的影响。分析得出,装调误差降低了光束对准系统性能,甚至导致对准算法发散,通过调节光路中反射镜M2和解耦平面的距离L2与反射镜M1和解耦平面的距离L1的比值L2/L1可以优化系统的收敛性能。实验结果表明,当L2/L1较大时对准系统调节性能较差,收敛速率较低;当L2/L1较小时光束对准系统可以快速地收敛到目标位置,有效地对光束进行对准调节。推导证明与模拟分析可为光束对准系统以及整个曝光光路的设计提供理论指导。
光栅 扫描干涉场曝光系统 光束对准 收敛性能 装调误差 
中国激光
2016, 43(12): 1205001
Author Affiliations
Abstract
1 University of Chinese Academy of Sciences, No.19 Yuquan Road, Shijingshan District, Beijing 100049, China
2 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Key Laboratory of High Power Laser and Physics, No. 390, Qing he Road, Shanghai 201800, China
3 China Academy of Engineering Physics, Shanghai Institute of Laser Plasma, No. 390, Qing he Road, Shanghai 201800, China
Laser beam far-field alignment as well as frequency-doubling and frequency-tripling crystal adjustment is very important for high-power laser facility. Separate systems for beam and crystal alignment are generally used while the proposed approach by off-axial grating sampling share common optics for these two functions, reducing both space and cost requirements. This detection system has been demonstrated on the National Laser Facility of Israel. The experimental results indicate that the average far-field alignment error is <5% of the spatial filter pinhole diameter, average autocollimation angle error of crystals is <10 μrad, and average frequency-tripling conversion efficiency is 69.3%, which meet the alignment system requirements on the beam direction and crystals.
laser technique far-field beam alignment crystal alignment grating frequency conversion 
Collection Of theses on high power laser and plasma physics
2015, 13(1): 036108
Author Affiliations
Abstract
中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
Measurement platform must exhibit a stereoscopic space distribution in diagnostic systems for petawatt lasers to meet the requirement of a periodically poled lithium niobate (PPLN) crystal for light polarization in singlepulse contrast measuring instrument. A mathematical model of a 4D linear matrix is proposed to achieve rapid and accurate beam alignment in picosecond measurement platform. In the petawatt experiments, the alignment algorithm ensures that the near-field and far-field accuracy is less than 0.16 mm and 0.17 mrad, respectively. The motor is adjusted less than three times, and the corresponding elapsed time is in 2 min. The mathematical model meets measurement requirements for alignment accuracy and time. The pulse contrast of the petawatt lasers is obtained from the model. The pulse acquisition probability of the contrast measuring instrument reaches 90% from 10%, to guarantee that the experimental result of pulse contrast can meet the general requirement (more than 106).
激光技术 光束准直 准直算法 皮秒激光 laser technique beam alignment collimation arithmetic picosecond laser 
Collection Of theses on high power laser and plasma physics
2015, 13(1): 0502006

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!