作者单位
摘要
1 唐山师范学院物理科学与技术学院, 河北 唐山 063000
2 深圳大学微纳光电子学研究院/纳米光子学研究中心, 深圳市微尺度光信息技术重点实验室, 广东 深圳 518060
表面等离激元自诞生以来已有一百多年的历史, 并逐渐形成了一门新的学科--表面等离激元光子学。 位于金属纳米结构中的局域表面等离激元可产生非常显著的近表面电场增强, 并成功应用于诸多研究领域当中, 而对局域表面等离激元与外界入射光中磁场的相互作用的研究则相对较少。 该研究在前期已有的研究基础之上模拟计算了金属纳米球-纳米圆盘结构间隙处的近表面电、 磁场增强, 研究结果表明该结构在单束紧聚焦径向偏振光束的激发下, 金属纳米圆盘产生局域表面等离激元呼吸模式和上下表面处的电偶极矩模式, 该模式使圆盘中心纵向表面电场得到增强。 由于金属纳米圆盘与金属纳米球的局域表面等离激元电偶极矩的耦合共振相互作用, 可以形成纵向电场得到有效增强的局域表面等离激元共振间隙模式。 通过数值模拟计算研究, 证明该金属纳米结构间隙模式的纵向电场分量相对于径向偏振入射光的有效激发横向电场分量即近表面电场的增强因子高达250倍; 而近表面磁场的增强因子高达170倍。 为了更清晰地展现出这种新型金属纳米结构的光谱特性以及近表面电、 磁场分布特征, 还展示出了该金属纳米结构的近表面电场增强分布、 近表面磁场振幅分布以及近表面电、 磁场共振波长的对比分析, 计算结果表明所提出的金属纳米球-纳米圆盘结构具有明显的局域近表面电、 磁场增强优势以及较宽的频谱波段。 由于本文提出的金属纳米结构具有电、 磁场增强优势, 希望计算结果能应用到更多的研究领域当中, 尤其是生物医学等领域, 为人们抗击疫情提供一点点参考和帮助。
微纳光学 金属纳米球-纳米圆盘 表面等离激元共振 电磁场增强 Micro-nano optics Metal nanosphere-nanodisc Surface plasmon resonance Electromagnetic field enhancement 
光谱学与光谱分析
2022, 42(4): 1098
作者单位
摘要
1 华东师范大学 上海市多维度信息处理重点实验室,上海 200241
2 华东师范大学 极化材料与器件教育部重点实验室,上海 200241
量子阱红外探测器是继碲镉汞红外探测器之后又一重要的可以在中、长波段和甚长波段工作的红外探测器件。它在长波红外探测、多色探测及其焦平面技术方面表现出比碲镉汞红外探测器更具特色的优势,对量子阱红外探测器的研究将在很大程度上推动我国红外探测器技术的发展。这一探测器的突出优势是其材料均匀性好,制备技术成熟。但是由于量子效率偏低,且无法直接吸收垂直入射红外光,所以需要针对不同的红外探测波段,设计和制备各类光栅或微腔结构来进行光耦合及局域光场增强以有效提升探测器性能。如何更有效提升量子阱红外探测器的光耦合效率,降低暗电流,提高器件工作温度是仍然是目前研究的重点。文中着重介绍和总结了近5年来研究的局域光场增强的新型量子阱红外探测器,从提高探测器光耦合效率、降低器件暗电流和提高工作温度等方面重点讨论各种量子阱红外探测器的新结构和新机理,同时展望了这一探测器的未来发展方向。
量子阱红外探测器 表面等离激元 光耦合 局域光场增强 quantum well infrared detector surface plasmon optical coupling local electromagnetic field enhancement 
红外与激光工程
2021, 50(1): 20211009
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
2 Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
3 MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
We present a detailed analysis on mode evolution of grating-coupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guided-wave theory. The eigenvalue equations for SPPs modes are discussed, revealing that cylindrical metal waveguides only support TM01 and HEm1 surface modes. During propagation on the metal tip, the grating-coupled SPPs are converted to HE31, HE21, HE11 and TM01 successively, and these modes are sequentially cut off except TM01. The TM01 mode further propagates with drastically increasing effective mode index and is converted to localized surface plasmons (LSPs) at the tip apex, which is responsible for plasmonic nanofocusing. The gap-mode plasmons can be excited with the focusing TM01 mode by approaching a metal substrate to the tip apex, resulting in further enhanced electric field and reduced size of the plasmonic focus.
surface plasmon polaritons plasmonic tip nanofocusing metal nanostructures electromagnetic field enhancement 
Opto-Electronic Advances
2018, 1(6): 180010
作者单位
摘要
西安邮电大学 电子工程学院 光电子技术系, 西安 710121
在外光场激励下, 金属纳米结构衬底表面所形成的集体电子振荡模式可有效调制其局域电磁场分布, 对居于衬底附近的荧光分子的荧光辐射产生调控。其影响因素主要取决于衬底金属表面所形成的电磁振荡模式和电磁场分布性质。归纳了光谱学中表面增强荧光效应研究的关键问题, 指出了周期性有序衬底金属增强荧光及其金属纳米颗粒增强荧光研究的主要研究进展。基于局域电磁场增强机理模型, 讨论了不同形貌衬底金属对荧光分子的荧光调控机理和影响因素。对表面增强荧光效应的研究前景进行了展望。
光谱学 表面增强荧光效应 局域电磁场增强 金属纳米结构 spectroscopy surface enhanced fluorescence local electromagnetic field enhancement metallic nanostructure 
激光技术
2018, 42(4): 511
作者单位
摘要
1 天津工业大学电子与信息工程学院, 天津 300387
2 天津市光电检测技术与系统重点实验室, 天津 300387
3 天津理工大学理学院, 天津 300384
4 承德医学院附属医院, 河北 承德 067000
针对表面增强拉曼散射的应用, 采用严格耦合波分析方法研究了亚波长金属槽阵列的表面电磁场增强效应。模拟阵列周期和槽深对阵列槽口处电磁场增强的影响, 明确了结构内部共振效应对电磁场增强的贡献, 分析了亚波长金属槽阵列拉曼散射的平均增强效果及阵列外空间中电磁场增强的有效作用范围。研究表明, 在槽内共振效应的影响下, 亚波长金属槽阵列在一个周期内的拉曼散射增强因子可达106数量级, 并在垂直距离阵列表面1/5波长的范围内可得到明显的电磁场增强, 超出该范围增强因子将迅速衰减到1的数量级。数值结果表明阵列表面电磁场增强几乎不受贵金属类型的影响。
表面光学 表面增强拉曼散射 电磁场增强 亚波长金属槽阵列 严格耦合波分析 
中国激光
2017, 44(11): 1113001
Author Affiliations
Abstract
Department of Optics & Optical Engineering, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
An overview of recent researches of surface plasmon resonance (SPR) sensing technology in Laboratory of Science and Technology of Micro-Nano Optics (LMNO), University of Science and Technology of China, is presented. Some novel SPR sensors, such as sensors based on metallic grating, metal-insulator-metal (MIM) nanoring and optical fiber, are designed or fabricated and tested. The sensor based on localized surface plasmon resonance (LSPR) of metallic nanoparticles is also be summarized. Because of the coupling of propagating surface plasmons and localized surface plasmons, the localized electromagnetic field is extremely enhanced, which is applied to surface-enhanced Raman scattering (SERS) and fluorenscence enhancement. Future prospects of SPR and/or LSPR sensing developments and applications are also discussed.
Surface plasmons resonance localized surface plasmon resonance sensor electromagnetic-field enhancement high sensitivity 
Photonic Sensors
2012, 2(1): 37

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!