赵晶 1,4李少博 1,2郭杰龙 2,3,*俞辉 2,3[ ... ]李杰 2,3
作者单位
摘要
1 厦门理工学院 电气工程与自动化学院,福建 厦门 361024
2 中国科学院 福建物质结构研究所,福建 福州 350108
3 中国科学院 海西研究院 泉州装备制造研究中心,福建 泉州 362000
4 厦门市高端电力装备及智能控制重点实验室,福建 厦门 361024
激光雷达数据由于其几何特性,被广泛应用于三维目标检测任务中。由于点云数据的稀疏性和不规则性,难以实现特征提取的质量和推理速度间的平衡。本文提出一种基于体柱特征编码的三维目标检测算法,以Pointpillars网络为基础,设计Teacher-Student模型框架对回归框尺度进行蒸馏,增加蒸馏损失,优化训练网络模型,提升特征提取的质量。为进一步提高模型检测效果,设计定位引导分类项,增加分类预测和回归预测之间的相关性,提高物体识别准确率。本网络所做改进没有引入额外的网络嵌入。算法在KITTI数据集上的实验结果表明,相比于基准网络,在三维模式下的平均精度值从60.65%提升到了64.69%,鸟瞰图模式下的平均精度值从67.74%提升到70.24%。模型推理速度为45 FPS,在提升检测精度的同时满足了实时性要求。
激光点云 三维目标检测 知识蒸馏 分类置信度 laser point cloud 3D object detection knowledge distillation classification confidence 
液晶与显示
2024, 39(1): 79
袁善帅 1,2丁雷 1,2,3,*
作者单位
摘要
1 中国科学院上海技术物理研究所红外探测与成像技术重点实验室,上海 200083
2 上海科技大学信息科学与技术学院,上海 201210
3 中国科学院大学,北京 100049
自动驾驶场景中,通常会用基于体素化的算法来完成点云3D目标检测任务,因为该类方法拥有计算量少、耗时少等方面的优势。但是当下常用的方法往往会带来双重信息损失,其一是体素化带来的量化误差造成的,其二则是对体素化后的点云信息利用不充分造成的。设计一个三阶段的网络结构来解决信息损失大的问题。第一阶段使用基于体素化的优秀算法完成输出边界框的任务;第二阶段利用一阶段特征图上的信息精修边界框,以解决一阶段对输入信息利用不充分的问题;第三阶段利用了原始点的精确位置信息再次精修边界框,以弥补体素化带来的点云信息损失。在Waymo Open Dataset上,所提多阶段3D目标检测算法的检测精度超过了CenterPoint等受工业界青睐的优秀算法,且满足自动驾驶落地的时间要求。
机器视觉 3D目标检测 激光点云 多阶段 信息增强 
激光与光电子学进展
2024, 61(4): 0415003
作者单位
摘要
1 山东科技大学测绘与空间信息学院,山东 青岛 266590
2 河北省地理信息集团有限公司,河北 石家庄 050000
3 河海大学地球科学与工程学院,江苏 南京 211100
针对道路养护管理中缺乏车辙精确边界自动分析提取的问题,提出一种基于点云分水岭算法的路面车辙三维轮廓提取方法。首先对单车道路面激光点云数据进行高程归一化处理,消除路面横向设计坡度影响;利用包络线算法计算路面横断面的相对深度,生成路面点云相对深度模型,用于增强车辙辙槽的凹陷特征,并消除路面纵向坡度对点云分水岭算法的影响;然后,通过计算车辙边界曲率特征获取车辙粗略分界线,据此将路面划分为5个区域,选择每条横断面在对应区域相对深度最大的点作为点云分水岭算法的注水点集;最后,根据分水岭算法积水浸没的原理精确获取车辙的纵向轮廓。利用青岛平度市内S218省道的路面车辙激光点云数据进行实验分析。结果表明:所提方法可准确提取多类型的车辙边界,获取的车辙轮廓纵向边界均方根误差小于5 cm;同时,基于车辙边界获得的车辙深度均方根误差均小于1.5 mm,包络线法计算的车辙深度均方根误差均大于1.5 mm,所提方法具有更高的精度。所提方法为道路养护管理提供了一种有效的车辙三维轮廓提取方法。
遥感 路面激光点云 车辙 分水岭算法 三维轮廓 
激光与光电子学进展
2024, 61(4): 0411010
作者单位
摘要
北京理工大学光电学院精密光电测试仪器及技术北京市重点实验室,北京 100081
针对现有的基于点的网络平等地对待所有的点从而无法有效关注重要特征的问题,在激光雷达点云处理领域引入注意力机制,即CSA模块,其中CA表示通道注意力,SA表示空间注意力。两个模块以数据驱动的方式自动学习不同特征通道信息和不同空间位置信息的重要性,从而提升网络在点云分类和分割任务上的表现。在基于点的网络中引入了上述两个模块,提出了CSA-PointNet++结构。实验结果表明:所提方法在ModelNet40数据集上的分类准确率达93.20%,在ShapeNetPart数据集上的部件分割实验的平均交并比(mIoU)为82.62%,优于其他对比方法,验证了所提网络的有效性;同时,在真实世界自建数据集上,所提方法的分类准确率达92.14%,证明了网络在真实世界的数据上具有良好的泛化能力。
深度学习 激光点云 点云处理 特征提取 注意力机制 
激光与光电子学进展
2023, 60(24): 2415003
作者单位
摘要
1 国网辽宁省电力有限公司电力科学研究院,沈阳 110006
2 国网辽宁省电力有限公司,沈阳 110006
3 沈阳农业大学 信息与电气工程学院,沈阳 110161
4 国网辽宁营销服务中心,沈阳 110168
电力电缆敷设不规范是导致绝缘故障的主要原因,影响电缆的安全运行。当前电缆敷设质量检测多采用人工接触式测量,主观性强、精度低,容易对敷设区域造成二次损伤。文章提出一种基于点云的隧道电缆敷设质量参数自动检测方法。首先在电缆敷设施工位置获取隧道电缆点云数据;之后基于隧道的结构特征分割出电缆点云;最后,基于颜色和形态特征从电缆点云中分割出敷设区域并自动测量敷设质量参数。所提出的电缆和敷设区域点云分割算法的平均精确度、召回率、F1分数均大于0.92,自动测量的4个敷设质量参数平均绝对误差均小于0.35 mm。试验表明,该方法可以准确定位电缆敷设区域,并对敷设质量参数进行自动精准测量。
三维激光点云 电缆敷设 点云分割 计算机视觉 3D laser point cloud cable laying point cloud segmentation computer vision 
半导体光电
2023, 44(3): 460
作者单位
摘要
1 上海电力大学自动化工程学院,上海 200090
2 国网安徽省电力有限公司长丰县供电公司,安徽 合肥 231100
现实中存在大量对称物体,利用三维激光扫描设备可获得对称物体的三维点云,但由于遮挡及设备本身等因素,三维点云会产生缺损。针对该问题,提出一种基于物体对称性的非完备激光三维点云分类补全方法。根据单幅二维图像中的对称关键点,建立对称平面的映射关系,根据对称平面在点云中的位置对非完备点云进行分类。针对半残缺点云,直接进行对称平面检测,然后做镜像补全;针对残缺未过半点云,与镜像点云融合后去除镜像点云中的重复数据点,完成补全;针对残缺过半点云,与镜像点云融合后利用孔洞直接修复方法补全缺失信息;针对极度残缺点云,考虑到缺失信息过多,将输入点云与镜像点云融合后再与完整的相似点云进行融合,去除冗余点完成缺失信息弥补。非完备三维点云的实际采集点云与公共数据库中点云的实验结果显示,所提补全方法能将不同类型的非完备点云补全为与完整点云极为相似的点云,验证了所提分类补全方法的有效性和可行性。
激光点云 对称平面 点云补全 镜像对称 
激光与光电子学进展
2023, 60(20): 2010004
作者单位
摘要
1 广西大学电气工程学院广西电力装备智能控制与运维重点实验室,广西 南宁 530004
2 河北对外经贸职业学院数字信息系,河北 秦皇岛 066311
3 人工智能四川省重点实验室,四川 宜宾 644000
从扫描的隧道激光点云场景中分割出隧道壁和标靶球是隧道三维重建的重要环节,同时也是实现隧道场景自动化监测的关键技术。然而,激光扫描获取的隧道三维点云中常包含着噪声点和离群点,隧道点云场景中的地面点占比较高且与隧道壁相连,直接对隧道点云数据进行标靶球和隧道壁的提取和识别具有一定挑战性。针对现有点云滤波算法不适用于隧道点云场景的问题,本文提出了基于法线评估的RANSAC平面拟合与直通滤波相结合的地面滤波算法。针对隧道壁和标靶球难以提取的问题,本文基于隧道点云地面的滤波结果,提出了一种基于DBSCAN聚类分割和条件约束的标靶球提取算法和隧道壁提取方案,利用非线性最小二乘球拟合方法对提取的标靶球点云进行处理,实现标靶球信息的提取及定位。本文在不同隧道场景点云上进行了实验,结果表明:本文地面滤波方法的总误差/Kappa系数在两个场景中分别为0.54%/97.75%和1.16%/96.71%,而且本文提出的标靶球拟合方法在3个标靶球上分别达到了99.8583%、99.5304%和92.9250%的精度。
遥感 隧道场景 激光点云 地面滤波 隧道壁提取 标靶球提取 
中国激光
2023, 50(13): 1310001
作者单位
摘要
1 湖北工业大学机械工程学院,湖北 武汉 430068
2 武汉大学遥感信息工程学院,湖北 武汉 430072
3 中铁大桥科学研究院有限公司,湖北 武汉 430034
4 桥梁结构健康与安全国家重点实验室,湖北 武汉 430034
针对大型桥梁车辆移动荷载监测场合中车辆的重心估计能力不足和车辆再识别困难等问题,提出一种基于点云灰度图的彩色图像与点云快速融合方法,以提高对车辆的空间定位能力和对目标的辨识能力。首先利用立体标定靶对不同视角相机和点云采集装置的位姿进行标定,获取它们彼此间的相对位置和姿态;然后利用标定的结果对不同视角采集到的点云进行拼接,得到完整的车辆点云;再将完整点云转换至彩色相机坐标系并投影,提取点云灰度图,实现彩色图像与点云灰度图的配准,将其姿态调整至与车辆实体在彩色相机坐标系内的位置和姿态一致。进一步建立彩色像素点与三维点云间的映射关系,并将颜色信息与点云相关联,从而实现彩色图像与点云的融合。利用融合后的彩色点云和相机成像模型,可以得到车辆在彩色相机坐标系中的虚拟图像,为车辆的再识别提供依据。结果显示,相比于采样一致性算法,所提配准算法缩短了约74.1%的耗时。实验表明,所提算法实现数据融合后生成的彩色点云具有较高的还原度,证明了所提算法的可行性,为解决类似的问题提供了新的思路和方法。
激光点云 多源数据融合 立体标定靶 点云灰度图 虚拟图像 点云着色 
激光与光电子学进展
2023, 60(10): 1028005
师恒 1,2,3,4高昕 1,*李希宇 1雷呈强 1[ ... ]孙锐 1
作者单位
摘要
1 北京跟踪与通信技术研究所,北京 100094
2 中国科学院西安光学精密机械研究所,西安 710119
3 中国科学院空间精密测量技术重点实验室,西安 710119
4 青岛海洋科学与技术国家实验室发展中心,山东 青岛 266237
为实时测量火箭垂直起飞段轨迹数据,提出了一种基于激光雷达的融合轨迹测量技术,将两台激光雷达分别安装于二维精密转台构成融合测量系统,在火箭发射前,两台激光雷达同时扫描火箭中上部目标区域,采用激光点云数据修正、火箭目标区域轨迹初值解算和两台轨迹数据融合处理算法,计算并分析得到激光雷达静态与动态轨迹测量精度分别为0.023 5 m和0.036 6 m。在火箭垂直起飞过程中,二维精密转台实时接收火箭目标区域的轨迹数据,根据火箭位置信息引导激光雷达高精度跟踪扫描火箭起飞全过程,实现了火箭垂直起飞段实时高精度的轨迹测量与数据输出。基于激光雷达的火箭起飞段融合轨迹测量技术有效提高了火箭轨迹数据的测量精度和测量可靠性,保证了火箭发射安全。
激光雷达 轨迹测量 激光点云数据 融合数据处理 动态测量精度 Lidar Trajectory measurement Laser point cloud datas Fusion data processing Dynamic measurement accuracy 
光子学报
2022, 51(12): 1212001
作者单位
摘要
1 长春光华学院,吉林 长春 130033
2 吉林师范大学,吉林 四平 136000
激光扫描建模中通常采用一次匹配技术,但是室外三维景观处于三维环境下,一次匹配会导致大量激光点云数据特征丢失,导致室外景观三维建模效果差。提出基于二次匹配技术的室外景观三维激光建模方法。首先,在三维激光扫描技术中引入SFM方法,以此获取完整的点云数据,选取控制点进行初始配准,通过ICP算法精确配准两种点云数据。为提高点云数据的融合性,针对数据颜色等特征进行二次匹配,实现点云数据融合。最后,使所有点云数据在同一坐标中,将融合过的点云数据进行去噪、滤波和点云拼接等预处理,将数据中的两种曲面进行拟合并导入三维软件中,实现室外景观建模。试验结果表明,所提方法的三维景观建模立体水平较高,建模效果清晰,精度较高。
三维扫描 激光点云 二次匹配 数据融合 三维建模 曲面拟合 three-dimensional scanning laser point cloud secondary matching data fusion 3D modeling surface fitting 
应用激光
2022, 42(3): 147

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!