Author Affiliations
Abstract
1 School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
2 Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
3 Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, USA
4 SLAC National Accelerator Laboratory, Menlo Park, CA, USA
5 Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
6 The John Adams Institute for Accelerator Science, Imperial College London, London, UK
7 ELI Beamlines Centre, Institute of Physics, Czech Academy of Sciences, Dolní Břežany, Czech Republic
8 Department of Applied Physics, Stanford University, Stanford, CA, USA
9 Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
10 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
11 Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
12 Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.
Bayesian optimization high repetition-rate laser–target interaction laser-driven particle acceleration proton generation 
High Power Laser Science and Engineering
2023, 11(3): 03000e35
Author Affiliations
Abstract
1 John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, UK
2 School of Maths and Physics, Queen’s University Belfast, Belfast, UK
3 Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
4 SLAC National Accelerator Laboratory, Menlo Park, USA
5 ELI Beamlines Centre, Institute of Physics, CAS, Dolni Brezany, Czech Republic
6 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
7 Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
8 Department of Mechanical Engineering, Stanford University, Stanford, USA
9 Department of Applied Physics, Stanford University, Stanford, USA
10 Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
11 Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
We present the development and characterization of a high-stability, multi-material, multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz. The tape surface position was measured to be stable on the sub-micrometre scale, compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers ( $>$ kHz). Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods. The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team, with the exception of tape replacement, producing the largest data-set of relativistically intense laser–solid foil measurements to date. This tape drive provides robust targetry for the generation and study of high-repetition-rate ion beams using next-generation high-power laser systems, also enabling wider applications of laser-driven proton sources.
high-repetition-rate laser target laser–plasma acceleration proton generation tape-drive target 
High Power Laser Science and Engineering
2023, 11(2): 02000e23
Author Affiliations
Abstract
1 Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
2 Department of Research and Development, HIL Applied Medical, Ltd., Jerusalem, Israel
3 Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
Microstructured targets demonstrate an enhanced coupling of high-intensity laser pulse to a target and play an important role in laser-induced ion acceleration. Here we demonstrate an approach that enables us to control the morphology of amorphous solid water (ASW) microstructured targets, by deposition of water vapor on a charged substrate, cooled down to 100 K. The morphology of the deposited ASW structures is controlled by varying the surface charge on the substrate and the pressure of water vapor. The obtained target is structured as multiple, dense spikes, confined by the charged area on the substrate, with increased aspect ratio of up to 5:1 and having a diameter comparable with the typical spot size of the laser focused onto the target.
amorphous solid water morphology laser-driven acceleration laser target 
High Power Laser Science and Engineering
2021, 9(3): 03000e37
作者单位
摘要
武汉纺织大学机械工程与自动化学院, 湖北 武汉 430073
为提高机器人在切削加工柱形工件时的精准性和高效性,运用视觉重构与机器人运动联合技术,提出了一种基于双目视觉和激光靶标重构点生成机器人切削加工轨迹的算法。首先搭建CCD相机视觉环境以及圆点激光器测量装置,通过遍历工件表面形成动态轨迹;然后重构轨迹点并拟合成连续的切削加工路径,以自适应倍数离散差分算法规划机器人加工轨迹;最后通过机器人手眼系统的坐标系闭环链,将姿态轨迹换算成机器人关节运动角度,形成了从三维重构曲线到机器人轨迹姿态规划的整套自动加工方案。仿真实验结果表明,该方法能精准地提取工件轮廓的三维坐标,生成机器人空间曲线的姿态轨迹,完成切削加工任务。
双目视觉 激光靶标重构 曲线拟合 轨迹规划 手眼系统 
激光与光电子学进展
2020, 57(10): 101503
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 长春科技学院, 吉林 长春130600
3 中国洛阳电子装备试验中心 光电对抗测试评估技术重点实验室, 河南 洛阳 471000
为提高激光导引头测角精度, 研究了激光导引头测角误差的来源, 并分析了直写式激光导引头标定系统误差。首先, 分析了激光导引头内光学系统和探测器安装误差对导引头测角的影响; 其次, 介绍直写式激光导引头标定系统的工作原理, 给出理想条件下转台转角和导引头测角关系; 再次, 为了提高标定后导引头测角精度, 分析了标定系统存在的安装误差; 最后, 针对一次实际的标定过程, 结合文中分析方法对标定系统误差进行了校正, 导引头零位误差由校正前的2.5 mrad降低到了1 mrad以内。文中结论为直写式激光导引头标定系统中的结构安装精度要求提供了分析方法, 进而提高了标定后激光导引头的测角精度。
误差分析 直写式激光目标模拟器 半主动激光导引头 齐次坐标变换 error analysis direct writing laser target simulator semi-active laser seeker homogeneous coordinate transformation 
红外与激光工程
2019, 48(11): 1105007
作者单位
摘要
1 北京航空航天大学物理科学与核能工程学院, 北京 100191
2 中国科学院半导体研究所固态光电信息技术实验室, 北京 100083
激光半主动制导技术极大地提高了导弹命中率,激光器作为目标指示器的核心器件,其研究进展对整个激光制导**系统意义重大。首先介绍了用于目标指示器的激光器的发展历程和研究现状;然后阐述了当前该激光器的主要技术原理和方案,分析了其优势和不足;最后对该激光器的未来发展方向进行了展望。
激光器 激光二极管抽运固体激光器 激光半主动制导 激光目标指示器 免温控技术 
激光与光电子学进展
2019, 56(1): 010002
作者单位
摘要
江苏曙光光电有限公司 激光装备研发部,江苏 扬州 225009
采用高功率激光二极管阵列(LDA)端面泵浦Nd:YAG激光棒方式,结合凸凹非稳腔的设计,获得20 Hz运转条件下小束散角激光输出平均能量约为83 mJ。以该激光为振荡源,同样采用LDA端面泵浦Nd:YAG激光棒的方式进行能量放大,组成LDA端面泵浦振荡-放大(MOPA)激光器,最终获得重频频率20 Hz、平均能量>200 mJ、发散角<2.1 mrad、能量波动<±2.5%的脉冲激光输出。该激光器光光转换效率约为14.6%,体积为175×91×49 mm3,质量<1 kg,激光经8倍发射天线后发散角<0.3 mrad。
激光二极管阵列 端面泵浦 振荡-放大器 激光测距机 激光目标指示器 laser diode array(LDA) end-pumped master oscillator-power amplification(MOPA) laser range finder laser target designation 
应用光学
2019, 40(3): 489
作者单位
摘要
天津大学精密测试技术及仪器国家重点实验室, 天津 300072
为解决6D激光标靶在受非引力外力作用的环境下姿态测量失效的问题,提出了一种基于激光标靶和捷联惯导系统(SINS)的组合位姿测量方法。通过推导卡尔曼滤波状态方程与观测方程,建立组合测量系统的卡尔曼滤波模型,利用卡尔曼滤波校正位姿误差和惯性测量单元(IMU)随机误差。在卡尔曼滤波模型中加入故障检测方法,使组合系统具有自监控功能。当激光标靶姿态失效时,仅使用校正后的SINS数据,保证系统的可靠性。最后,对所提方法进行仿真验证。仿真结果表明,该方法能有效地解决激光标靶姿态角测量失效问题,提高系统抗干扰性和动态性能。
测量 激光标靶 捷联惯导系统 卡尔曼滤波 故障检测 
激光与光电子学进展
2018, 55(1): 011202
作者单位
摘要
1 中国工程物理研究院激光聚变研究中心, 四川绵阳 621999
2 电子科技大学能源科学与工程学院, 四川成都 611731
实验测量了神光 -III原型装置上脉冲强激光与金属靶相互作用产生的电脉冲辐射, 电脉冲峰值梯度为 3 kV/m, 频谱范围大约在 50 MHz~2 GHz, 在 160 MHz等处有明显的特征峰, 信号持续时间大约 60 ns。本文研究表明电偶极辐射是打靶过程产生电磁脉冲信号的来源之一, 由理论模型计算得到频率为 160 MHz的特征峰, 并计算出探测点电场脉冲峰值梯度约为 2 kV/m, 辐射总功率约 105 W, 能量转换率约 10-6, 辐射功率近似正比于激光能量的 4/3次方, 可见激光能量越大, 功率密度越高, 电脉冲的辐射强度越大。大型激光装置上的激光与靶作用产生的电磁脉冲测量, 对大型激光装置产生的电磁辐射的防护有重要指导作用, 在等离子体诊断等领域也有潜在应用价值。
激光等离子体相互作用 电磁脉冲 天线 偶极辐射 laser-target interaction electromagnetic pulse antenna dipole radiation 
太赫兹科学与电子信息学报
2016, 14(6): 905
作者单位
摘要
1 北京理工大学 光电学院, 北京 100081
2 中国华阴兵器试验中心, 陕西 华阴 714200
激光目标模拟器逼真度主要用来评估目标模拟器出射激光对实际场景中激光照射器出射激光在传输及被目标发射时的近似程度。逼真度评估的有效程度取决于评估方案的适用性及实际可操作性。因此, 提出了一种激光目标模拟器模拟逼真度的有效评估方案, 并给出了具体指标的量化逼真度定义。首先给出了实战中的激光能量传输模型和半实物仿真系统中的光斑控制模型, 接着以此为依据重点研究了激光目标模拟器激光脉冲和激光光斑特性的逼真度评估内容, 最后通过计算各分项指标权重, 得出了激光目标模拟器的整体逼真度。逼真度量化评估方案可应用于激光目标模拟器的设计及性能评估, 从而达到在室内完成半实物仿真测试以减少总体测试费用和时间的目的, 对于现代化**系统设计具有十分重要的意义。
逼真度 激光目标模拟器 量化逼真度 脉冲特性逼真 光斑特性逼真 fidelity laser target simulator quantized fidelity laser pulse fidelity laser spot fidelity 
红外与激光工程
2016, 45(12): 1206012

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!