作者单位
摘要
1 桂林电子科技大学生命与环境科学学院, 广西 桂林, 541004
2 广西信息科学实验中心, 广西 桂林, 541004
采用LIGA(Lithographie, Galvanoformung, Abformung)工艺设计加工了一种微型针-柱放电结构芯片,可实现敞开式离子源和微型气泵的系统集成。此微型放电结构由采用电镀铜加工而成的针电极、上圆柱电极和下圆柱电极组成, 针-柱间距有1 mm、2 mm两种规格。在室温、大气压环境、无外界通入气流的条件下, 通过在针-柱电极上加载负直流高压, 可产生稳定的气体放电。利用风速计testo 405-V1测量芯片气体放电产生的离子风风速, 结果表明针-柱间距为2 mm时产生的离子风流速最大, 可达0.79m/s。对针-柱间距2mm规格的微型芯片进行乙酸进样电离实验, 当针-柱之间产生稳定的电晕放电后, 可发现位于芯片出口处已被去离子水润湿的PH试纸变红。此时利用微弱电流检测系统采集电离产生的离子, 当放电电压为-3300V时, 通过微弱电流采集系统检测到的电流信号可达120pA。采用LTQ XL 离子阱质谱仪, 对芯片电离丙酮、无水乙醇和乙酸乙酯的离子产物进行检测, 所得到的主要物质为质子化单体离子和二聚物离子。放电产生离子风风速以及乙酸的进样和电离实验表明, 基于LIGA的微型针-柱结构芯片可实现大气压环境下敞开式离子源和微型气泵的双重功能。
微型放电结构 电晕放电 离子源 微型气泵 Micro discharge structure corona discharge ion source mini air pump 
光学 精密工程
2017, 25(6): 1567
作者单位
摘要
厦门大学化学化工学院, 谱学分析与仪器教育部重点实验室, 福建 厦门 361005
利用大气压脉冲微放电剥蚀源对铝合金进行光谱分析。 该针板结构微放电装置具有价格低廉、 操作便捷、 分析快速等特点。 脉冲放电能瞬间注入极大的放电能量, 不致使样品融化, 进而保证放电的稳定性。 在几微秒的时间内, 对钨针电极施加近-4 000 V的高压, 电极间迅速形成放电通道, 针尖和样品之间形成高达20 A的电流, 造成对样品的剥蚀, 并对被剥蚀的粒子进行激发。 单次放电脉冲注入能量约为85 mJ, 能量以电流的形式传递于放电电极。 剥蚀形貌图表明放电微等离子体局域在电极间隙, 针尖轴向上的能量传递和电流密度远高于离轴区域。 为了深入研究剥蚀机制和物理性质, 对等离子体源的电学特性进行了讨论。 通过精确的时序拍摄技术观测了等离子体的演化过程, 从ICCD相机的快速成像结果可以看到等离子体源寿命与脉冲高压放电源的脉宽相当, 发光强度与放电电流变化趋势相吻合。 与光谱分析装置相连接, 脉冲微放电剥蚀源可有效激发合金样品中的铝、 镁、 锰、 铜等元素原子谱线。 对放电过程等离子体光谱特性进行考察, 利用玻尔兹曼斜线法和Stark展宽法计算等离子体电子温度和电子数密度, 分别得到过程中等离子体电子激发温度约6 700 K, 等离子体电子数密度约1017 cm-3量级, 并验证了放电处于局域热平衡状态。 探究其定量分析性能, 结果表明该脉冲微放电等离子体直接作为一种光谱分析源可实现对铝合金样品快速定量分析。
脉冲微放电等离子体 光谱分析 等离子体特性 元素分析 Pulsed micro-discharge plasma Spectral analysis Plasma characteristics Elemental analysis 
光谱学与光谱分析
2017, 37(6): 1661
作者单位
摘要
中国工程物理研究院 流体物理研究所, 四川 绵阳 621999
高气压下的微型电热推进器(MPT)中的放电等离子体存在多负辉区结构, 其负辉区有融合趋势。对矩形微放电等离子体推进器(RMPT)的负辉区融合过程进行了二维模拟分析, 在方法上采用了非平衡态的自洽流体模型, 并考虑了离子电流加热和三体碰撞过程。结果显示:矩形微放电等离子体推进器(RMPT)在低电流条件下存在两个稳定的负辉区, 当超过某一电流阈值条件后, 两个负辉区会在腔体中心重合。分析了这一过程的成因, 认为其融合过程本质上是空心阴极的导通过程, 其融合与否与鞘层电压有关。
微放电 等离子体 推进 micro discharge plasma thruster 
强激光与粒子束
2017, 29(8): 085002
作者单位
摘要
中国科学院力学研究所激光毛化技术中心, 先进制造工艺力学重点实验室, 北京 100190
使用激光诱导微弧放电的方法对45#钢进行了表面强化。通过实验对比了高压诱导放电(HVGD)和激光诱导放电(LGD)两种表面强化方法。发现激光诱导放电使电极间隙的击穿电压降低了一个数量级, 同时放电点和激光焦点重合, 实现了对放电点位置的控制。在两种诱导放电过程中放电点的膨胀速度基本相同, 但是受到初始放电点大小的影响, 激光诱导放电点直径大于高压诱导放电点。在两种诱导放电过程中强化深度都存在最大值, 约为180 μm。放电点的强化层由熔凝层和相变硬化层组成, 其中熔凝层的硬度最高达到800 HV。
材料 表面强化 激光诱导微弧放电 高压诱导微弧放电 
中国激光
2009, 36(8): 2178

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!