作者单位
摘要
西安工业大学 光电工程学院,陕西 西安 710032
介绍了一种基于计算全息的非对称多台阶衍射光学元件印模制备方法,研究了相位型计算全息的工作原理和设计方法,建立了相应的光学系统和衍射光波模型,设计了求取相位型印模微结构的算法流程。在理论分析的基础上,以叠心图案为例,利用MATLAB分别仿真了2台阶、4台阶、8台阶、16台阶衍射光学元件的相位信息以及表面微结构形貌,并对比了其再现图像的质量,发现台阶数越多,再现图像的质量越好。获得印模空间高度数据以及表面结构分布后,利用单点金刚石车削技术,采用快刀加工方式,分别加工了元件尺寸为6 mm×6 mm,最小特征尺寸为30 um的2台阶和4台阶印模,并获得了实际加工的台阶轮廓曲线以及表面结构轮廓。最后采用紫外固化纳米压印技术实现了4台阶印模的复制过程,并对复制样品进行了图像再现,结果表明该方法能用于非对称低台阶数衍射光学元件印模的制备。
计算全息 衍射微光学元件 印模微结构 再现图像 CGH diffractive micro-optical components mold microstructure reproduction of images 
应用光学
2019, 40(3): 404
作者单位
摘要
1 吉林大学 集成光电子学国家重点实验室, 长春 130012
2 清华大学 精密测试技术及仪器国家重点实验室, 北京 100084
为了解决飞秒激光加工硬质材料所带来的表面质量差的问题, 提出了离子束刻蚀与飞秒激光复合加工技术.利用飞秒激光加工技术在碳化硅表面制备微纳结构图形, 然后通过离子束刻蚀技术对碳化硅微纳结构进行刻蚀, 以调控结构的线宽和深度, 使结构表面粗糙度由约106 nm降低到11.8 nm.研究表明, 利用该技术制备的碳化硅菲涅尔波带片展现出良好的聚焦和成像效果.
超快激光 半导体加工技术 离子束刻蚀 碳化硅 微光学元件 Ultrafast lasers Semiconductor device manufacture Ion beams etching Silicon carbide Micro-optical components 
光子学报
2018, 47(12): 1214003
作者单位
摘要
1 吉林大学机械科学与工程学院, 吉林 长春 130025
2 吉林大学电子科学与工程学院集成光电子学国家重点联合实验室, 吉林 长春 130012
近年来, 微光学元件的制备与应用受到人们的广泛关注。微光学元件体积小、重量轻及制造成本低, 并且易于与微机电系统相集成, 能够实现普通光学元件难以实现的功能, 在光纤通信、信息处理、航空航天、生物医学、激光技术、光计算等领域, 突显出重要的应用价值。飞秒激光因其超短的脉冲宽度和超高的瞬时功率, 能够实现超高精度的微纳加工, 轻松突破衍射极限。飞秒激光加工技术对材料没有选择性, 加工过程也非常灵活, 可以进行任意复杂结构的加工, 丰富了微光学元件的制备种类。飞秒激光还能在现有结构或系统上进行集成加工, 极大扩展了微光学元件的应用。简要概述了微光学元件的优点及一些常用的制备方法, 同时对飞秒激光加工技术进行了简单概括, 对近年来飞秒激光制备各种微光学元件的实验和应用研究进行了综述, 最后对微光学元件未来的研究方向进行了预测和展望。
激光制造 微光学元件 飞秒激光 微纳加工 集成光学 
中国激光
2017, 44(1): 0102004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!