作者单位
摘要
1 大连理工大学 高性能精密制造全国重点实验室,辽宁大连6024
2 华侨大学 制造工程研究院,福建厦门36101
钇铝石榴石(YAG)晶体是制造固体激光器的重要材料,超精密磨削是加工YAG晶体等硬脆材料零件的重要方法,研究硬脆材料加工表面的微观变形、脆塑转变机理对超精密磨削加工具有重要的指导作用。为了实现YAG晶体低损伤磨削加工,获得高质量表面,基于弹塑性接触理论和压痕断裂力学,通过分析单磨粒划擦作用下材料表面的变形过程,考虑材料的弹性回复、微观下力学性能的尺寸效应,建立了脆塑转变临界深度的预测模型,并计算得到YAG晶体的脆塑转变临界深度为66.7 nm。在此基础上,通过不同粒度砂轮超精密磨削YAG晶体试验对建立的脆塑转变临界深度预测模型进行验证,并计算不同粒度砂轮在相应工艺条件下的磨粒切深。结果表明,磨粒切深高于脆塑转变临界深度时,YAG晶体磨削表面材料以脆性方式被去除,磨削表面损伤严重;磨粒切深低于脆塑转变临界深度时,磨削表面材料以塑性方式被去除,能够获得高质量磨削表面,加工表面粗糙度达到1 nm。建立的脆塑转变临界深度预测模型能够为YAG晶体的低损伤超精密磨削加工提供理论指导。
超精密磨削 YAG晶体 纳米压痕 纳米划痕 脆塑转变 YAG crystal nano-indentation nano-scratch brittle-to-ductile transition ultra-precision grinding 
光学 精密工程
2024, 32(1): 84
作者单位
摘要
1 昆明理工大学 机电工程学院, 昆明 650500
2 昆明物理研究所, 昆明 650233
3 昆明理工大学 环境科学与工程学院, 昆明 650500
采用Cube压头对单晶锗进行变载与恒载纳米划刻实验, 利用扫描电子显微镜和原子力显微镜对已加工表面进行观测, 根据表面形貌将划刻过程分为延性域、脆塑转变域及脆性域三种, 对各个阶段的表面成型及材料去除方式进行了研究。使用最小二乘法对不同阶段划刻力进行非线性拟合, 并利用相关系数检验拟合函数可靠性, 结果表明划刻力与划刻深度存在强相关性。同时分析了单晶锗的弹性回复率随划刻距离的变化趋势, 结果表明工件的弹性回复率将从纯弹性阶段的1逐步回落至0.76左右。基于脆塑转变临界载荷, 以裂纹萌生位置作为脆塑转变标志, 首次结合工件已加工表面弹性回复, 提出一种适用于计算单晶锗的脆塑转变临界深度模型, 其脆塑转变临界深度为489 nm。
单晶锗 纳米划刻实验 表面形貌 材料去除 弹性回复 脆塑转变 monocrystalline germanium nano-scratch experiment surface morphology material removal elastic recovery ductile-brittle translation 
无机材料学报
2019, 34(8): 867
作者单位
摘要
飞行自动控制研究所,陕西 西安 710065
介绍了Li2O-Al2O3-SiO2微晶玻璃的加工特点。基于纳米划痕技术对Li2O-Al2O3-SiO2微晶玻璃进行了纳米划痕实验,测得微晶玻璃材料脆延转变临界切削深度和临界载荷的平均值分别为125.6 nm和29.78 mN。将实验所得临界切削深度值与基于压痕断裂力学模型建立的脆延转变临界切削深度计算值进行了对比,结果表明,T. G. Bifano基于显微压痕法给出的临界切削深度计算值与实验结果差别较大,结合实验结果对其公式进行了修正;基于压痕断裂力学模型建立的延性域磨削临界切削深度计算值与实验结果相差较小,并分析了产生差异的原因。
脆性-延性转变 临界条件 纳米划痕 brittleness-ductility transition critical condition nano-scratch 
应用光学
2014, 35(3): 500

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!