作者单位
摘要
江南大学物联网工程学院轻工过程先进控制教育部重点实验室,江苏 无锡 214122
利用蒙特卡罗模拟和光密度算法评估线扫描成像系统对被测样品内部缺陷的检测性能。首先,引入三维体素分割方法,实现对内部缺陷不规则组织边界的精细划分,以改善传统蒙特卡罗方法难以准确模拟复杂组织的光学传输问题;分析了仪器参数对光子在组织内部的穿透深度、探测器的探测深度和表面漫反射率的影响,确定了最佳的参数配置;最后,利用光密度算法评估了系统对不同大小和深度缺陷的检测性能。仿真结果表明,在光源入射角为15°、光源-探测器距离为1 mm的条件下,线扫描成像检测系统能够兼顾光子探测深度和表面反射率;对于大(a=2 mm,b=3 mm,c=1 mm)、中(a=2 mm,b=2 mm,c=1 mm)、小(a=2 mm,b=1.5 mm,c=1 mm)三种尺度的椭球体缺陷,系统的缺陷深度检测限分别为3.5 mm、3 mm、2.7 mm。本研究结果为面向水果等农产品内部缺陷检测的线扫描成像系统的参数优化和性能评估提供了理论依据。
线扫描成像系统 蒙特卡罗模拟 内部缺陷 光密度算法 水果 
激光与光电子学进展
2023, 60(12): 1215005
马佳飞 1,2,3王贯 1,2,3姚昞晖 1,2,3顾春 1,2,3许立新 1,2,3
作者单位
摘要
1 中国科学技术大学 核探测与核电子学国家重点实验室, 合肥 230026
2 中国科学技术大学 物理学院 安徽省光电子科学与技术重点实验室, 合肥 230026
3 先进激光技术安徽省实验室, 合肥 230026
为了探究不同年龄段人眼的视觉特性, 采用立体色域的方法建立了显示系统中不同年龄人群的视觉感知模型, 以基于CIEL*A*B*颜色空间的立体色域作为标准, 取得了不同年龄观察者的立体色域数据。结果表明, 从光度学来看, 观察者年龄的增长会导致其明视光谱发光效率函数的峰值响应有小幅度的降低, 并且其峰值位置在波长轴上向长波方向移动; 从色度学上来看, 色域体积从20岁的1.73×106到60岁的1.16×106, 减小了约1/3, 且这种减小集中在中高亮度水平上; 进一步分析波长与立体色域的关系, 发现绿色光源对所有年龄观察者的立体色域影响最大, 对于所有的观察者推荐520 nm的最佳波长选择。该研究可为显示系统针对不同年龄观察者的色域、波长和亮度之间提供设计指导。
激光技术 立体色域 颜色理论 晶状体光学密度 laser technique stereoscopic color gamut color theory lens optical density 
激光技术
2023, 47(2): 260
作者单位
摘要
1 西安应用光学研究所,陕西 西安 710065
2 北京科益虹源光电技术有限公司,北京 102605
对矩形波宽带通滤光片进行了深入研究,提出了一种设计、制备矩形波宽带通滤光片的方法。使用该方法设计并制备了400 nm~1100 nm波段,中心波长λ0=515 nm,透射带λ=λ0±25 nm,透射带平均透射率 τˉ ≥92%,截止带λ=400 nm~475 nm、λ=555 nm~1 100 nm,截止带透射率小于0.1%的矩形波宽带通OD3-A滤光片。对样片光谱进行了测试,结果满足需求。该方法设计、制备矩形波宽带通滤光片克服了F-P型窄带滤光膜监控精度要求高、通带宽带窄、成本高以及传统长、短波截止膜组合方式膜层总厚度过大、通带透过率低、波形矩形度差的缺点。
光学薄膜 带通滤光膜 矩形波 吸光性 optical thin film band-pass filter film rectangular wave optical density 
应用光学
2023, 44(1): 188
邓勤 *
作者单位
摘要
Chongqing Research Institute Co.,Ltd., China Coal Technology and Engineering Group, Chongqing 400039, China
为实现机动车尾气高精度监测,提出一种高精度宽量程NO测量方法。针对尾气中SO2及NO在紫外波段存在吸收峰重合从而无法直接进行单组分气体反演问题,首先用紫外差分光学吸收光谱(ultra-violet differential optical absorption spectroscopy, UV-DOAS)法计算得到混合气体在NO敏感波段(200 nm~230 nm)的差分光学密度(differential optical density, DOD),并引入自适应干扰对消技术以实现混合气体DOD的快速分离,最终利用最小二乘法对分离出的NO进行浓度反演。该方法可实现100×10?6~3 000×10?6范围内NO浓度(气体的体积分数)快速反演,经测试,在100×10?6~200×10?6浓度范围内反演相对误差绝对值小于10%,在300×10?6~3000×10?6浓度范围内,反演相对误差绝对值小于5%。该方法具有测量量程大、速度快的特点,可满足汽车尾气中3 000×10?6范围内NO浓度测量要求。
紫外差分光学吸收光谱 差分光学密度 自适应干扰对消 最小二乘法 混合气体浓度反演 递归最小二乘法 ultraviolet differential optical absorption spectroscopy differential optical density adaptive interference cancellation least square method mixed-gas concentration inversion recursive least square method 
应用光学
2022, 43(6): 1054
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
Ni80Cr20合金薄膜在可见光波段展现出很好的光学中性度。真空镀膜系统中石英晶振膜厚传感器的测量误差是导致薄膜的实际光密度值偏离设定值的主要原因。为此,提出了一种提高中性密度滤光片光密度值精度的制备方法,即采用真空镀膜结合离子束蚀刻技术,通过对镀膜和蚀刻参数的精确控制,实现对薄膜厚度的精密调控,将光密度值的相对误差控制在±2%以内,绝对误差不超过±0.01,使得薄膜的厚度调控量处于原子层尺度,满足了滤光片在高精度要求下光谱系统中的使用要求。同时验证了中性密度滤光片在离子束蚀刻微量减薄后,依旧拥有良好的光学性能和表面平整度,使得离子束轰击蚀刻薄膜技术成为一种新的且可靠的薄膜厚度微量调控方法。
中性密度滤光片 Ni80Cr20 光密度 离子束蚀刻 neutral density filter Ni80Cr20 optical density value ion beam etching 
光学仪器
2021, 43(6): 70
作者单位
摘要
1 河南大学 物理与电子学院, 物理与电子国家级实验教学示范中心, 开封 河南 475004
2 北京邮电大学 电子工程学院, 北京 100876
为研究光密度空间分布的规律, 分析了近红外光经过人体组织时的漫射路径, 研究了基于近似漫射解的组织血氧饱和度算法, 提出了检测光密度空间分布的方法并搭建系统进行测试。结果表明: 不同波长的近红外光在手臂组织中有不同的光密度空间分布, 对于波长为850、940 nm的近红外光, 光密度空间分布的线性区分别在20~40 mm、20~35 mm。传感器中光源到探测器的距离应选择在光密度空间分布的公共线性区。研究结果对探究组织中光密度的空间分布和设计组织血氧传感器结构具有指导意义。
漫射近似解 光密度空间分布 漫射光强 组织血氧饱和度 血氧传感器 diffuse approximate solution optical density spatial distribution diffuse light intensity tissue oxygen saturation blood oxygen sensor 
光电子技术
2019, 39(4): 244
作者单位
摘要
1 上海理工大学光电信息与计算机工程学院,上海 200093
2 上海光学仪器研究所,上海 200093
研制了一种新型光谱感光仪,其特点是宽光谱 (340 nm~900 nm),大曝光面 (202 mm×90.5 mm),且面上具有多阶梯光强;制备具有 18级光密度值的高精密阶梯光楔板,每个台阶的光密度值误差不大于 0.01;根据光源的光谱特性镀制滤光膜,消除光栅二级光谱。自动控制采集系统采用 LabVIEW与 PLC一体机开发,水平方向采用光栅位移传感器构成闭环控制,波长定位偏差小于 0.05 nm;竖直方向采用线性补偿方法,高度位置偏差小于 0.05 mm。仪器能够自动测量光楔板上不同波长不同光强区域的单位面积光功率,用快门控制曝光时间,在宽光谱范围内对感光材料进行一次曝光。在显影定影后,用光密度计测量其光密度值,根据国标 (GB10557-89)绘制出感光材料某一确定光密度值的光谱灵敏度曲线。
光谱灵敏度 光密度 光谱 光强 阶梯光楔板 spectral sensitivity optical density spectrum light intensity step wedge 
光电工程
2019, 46(2): 180365
作者单位
摘要
1 天津工业大学电子与信息工程学院, 天津 300387
2 军事医学科学院卫生装备研究所, 天津 300161
近红外光密度差异法检测创伤性硬膜血肿具有快速、 无创等优点, 是近几年组织光学的研究热点, 在急救临床上有着重要应用。 为了进一步提高对颅脑外伤患者血肿程度的检测精度, 采用多通道差分吸光度方法获得头部左右对称吸光度数据, 即利用与近红外光源距离不同的5个检测器采集颅脑对称位置的光密度信息, 计算对称位置的差分吸光度, 利用偏最小二乘法建立脑部光学吸收系数与差分吸光度数据之间的校正模型, 实现对颅内硬膜血肿程度的预测。 可以检测具有不同头皮颅骨厚度患者是否出现硬膜血肿, 也可预测脑血肿程度。 模型仿真预测结果显示, 所建立预测模型对硬膜血肿部分的光学吸收系数预测平均相对误差为11.16%, 对血肿发生深度预测平均相对误差小于1%, 基本满足创伤性硬膜血肿程度的无创检测需求。 将多通道差分吸光度法引入到脑部血肿近红外光谱无创检测中来, 可以明显消除个体差异对检测结果的影响, 有效提高脑血肿检测精度, 并能实现对患者脑血肿程度的预测, 该方法为近红外光谱脑部检测研究提供了新的思路和重要参考。
创伤性硬膜血肿 近红外光密度差异 多通道差分吸光度 Traumatic subdural hematoma Differential near infrared optical density Multi-channel differential optical density 
光谱学与光谱分析
2018, 38(10): 3205
作者单位
摘要
1 天津工业大学电子与信息工程学院, 天津 300387
2 天津市光电检测技术与系统重点实验室, 天津 300387
基于近红外光谱法对组织内的异质体进行无创检测时, 光源-探测器(S-D)相对于异质体的位置对检测效果有着重要影响。 为实现对组织内异质体的快速定位, 该研究基于一源多探的检测结构针对不同水平位置、 不同深度和不同直径的异质体进行光密度分布有限元分析, 计算各探测器之间的差分光密度差异。 仿真实验结果表明, 根据多探测器形成的差分光密度差异曲线可快速定位组织内异质体的水平位置。 曲线的高斯拟合特征量与异质体的水平位置、 深度和直径有着强相关性。 基于差分光密度差异曲线可以实现组织内感兴趣区域的快速定位, 对采用近红外光谱法的组织肿瘤检测、 光学脑功能成像等领域的源-探位置放置提供重要参考, 提高其检测精度。
近红外光谱 异质体检测 差分光密度差异 高斯拟合 Near infrared spectroscopy Anomaly detection Differential optical density difference Gaussian fitting 
光谱学与光谱分析
2018, 38(11): 3362
作者单位
摘要
1 清华大学精密测试技术及仪器国家重点实验室, 清华大学精密仪器系, 北京 100084
2 中国计量科学研究院光学与激光计量科学研究所, 北京 100029
3 清华大学精密测试技术及仪器国家重点实验室, 清华大学精密仪器系, 北京 100084,
差分吸收光谱法(DOAS)是基于朗伯比尔定律的光谱法测量气体的重要方法, 按此原理建立的测量系统是测量痕量气体的主要方法。 用于测量痕量气体的DOAS系统的关键是其检出限的校准, 传统的方法是使用标准气体进行校准。 但是由于标准气体自身的量值确定问题, 在ppb甚至ppt级的不确定度大于10%, 而一般的ppt级的DOAS测量系统本身的不确定度也会高于标准气体, 导致传统方法失效。 提出一种基于光谱密度的DOAS系统校准方法, 利用朗伯比尔定律将DOAS系统的检出限和光谱密度建立关系。 由于光谱密度作为光学量值可以测量到10-6甚至更高, 所以通过该方法可以实现DOAS系统在ppb乃至ppt级的校准。 本方法需要根据待校准的测量系统光学结构的基本参数计算其总的标准光学密度值, 然后把标准光学密度片放入测量系统光程中, 测得其光学密度值, 根据前后两次光学密度计算测量系统的测量偏差, 进而分析计算测量系统的标准不确定度和标定的扩展不确定度, 所得到的标定的扩展不确定度即为测量系统的检出限。 该方法完全基于光学测量, 不需引入标准气体评估, 基于光学密度的精密测量和测量系统光学结构的装调误差, 实现测量系统在较小不确定度水平上的标定, 提高检出限标定的精度。 本方法在开放光程式的DOAS系统上进行了实验验证。
光谱密度 差分吸收光谱 朗伯比尔定律 校准 Spectral optical density DOAS(differential optical absorption spectroscopy) Lambert-Beer law Calibration 
光谱学与光谱分析
2017, 37(4): 1302

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!