作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
2 安徽理工大学电气与信息工程学院, 安徽 淮南 232001
3 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031安徽理工大学电气与信息工程学院, 安徽 淮南 232001
4 安徽大学物质科学与信息技术研究院, 信息材料与智能感知安徽省实验室, 安徽 合肥 230601
多轴差分吸收光谱仪(MAX-DOAS)结合计算机断层重建算法可获取目标痕量气体的空间分布情况。 为研究在具有背景浓度的条件下, 如城市背景下某个竖直截面上重建NO2空间分布的可行性, 设计了气体浓度可控条件下的验证性实验; 证明了利用MAX-DOAS在竖直平面重建NO2气体分布的可行性。 将充入标准气体的JGS1石英玻璃样品池作为研究对象, 使用两台MAX-DOAS采集光谱数据。 将气体浓度的梯度作为先验信息, 利用经典的ABOCS算法和Barzilai-Borwein算法重建了竖直平面内的NO2气体分布, 验证了利用MAX-DOAS在竖直平面内重建NO2气体空间分布的可行性, 同时确定了背景浓度对重建结果的影响。 研究结果表明, 以天空为背景的光谱作为参考谱和以空样品池为背景作为参考谱, 反演得到的NO2浓度非常接近, 因此研究对象中的样品池容器在NO2竖直平面分布重建方法中对实验结果的影响可以忽略。 实验中以市区为背景的MAX-DOAS具有较高的背景浓度, 特别是在仰角较低的情况下NO2背景浓度几乎达到6×1016 molec·cm-2, 以城市郊区没有明显的污染源为背景的MAX-DOAS, 背景浓度较低可以忽略。 重建结果显示, 当仰角为28°时, 气体沿光路的平均分子数密度为3.932 7×1015 molec·cm-2, 且在样品池内下部密度大, 上部密度小; 重建得到的SCD和测量得到的SCD符合比较好, 计算结果显示重建得到的气体分子数密度的峰值为5.77×1015 molec·cm-2, 与以城市郊区为背景的MAX-DOAS反演结果较为接近, 而以市区为背景时, 特别是仰角较小时, NO2背景浓度特别明显, 重建结果比测量结果的值小很多。 结果表明, 背景浓度在重建图像中表现为伪影, 影响对气体分布的观察, 而如果在重建算法时加入利用样品池内外气体存在浓度突变这一先验信息, 能够减轻背景浓度对重建结果造成的影响。
差分吸收光谱 浓度重建 多轴差分吸收光谱 迭代算法 数据拟合 Differential optical absorption spectrometer Gas reconstructing MAX-DOAS Iterative algorithms Data fitting 
光谱学与光谱分析
2023, 43(8): 2413
作者单位
摘要
1 西藏高原大气环境科学研究所, 西藏 拉萨 850000 中国科学院长春光学精密机械与物理研究所, 应用光学国家重点实验室, 吉林 长春 130033
2 中国气象科学研究院, 灾害天气国家重点实验室和青藏高原气象研究所, 北京 100081
3 中国气象局气象探测中心, 北京 100081
4 中国科学院长春光学精密机械与物理研究所, 应用光学国家重点实验室, 吉林 长春 130033
5 西藏自治区大气探测技术与装备中心, 西藏 拉萨 850000
基于多轴差分吸收光谱技术(MAX-DOAS)开展拉萨上空太阳散射光谱观测和对流层NO2柱浓度反演研究, 探究西藏和平解放70周年大庆活动期间拉萨上空NO2对流层垂直柱浓度变化特征。 研究结果表明: 观测实验期间(2021年8月9日至2021年8月31日)白天NO2对流层垂直柱浓度的平均值为4.46×1015 molec·cm-2, 明显高于西藏和平解放70周年大庆活动日当天NO2浓度水平(2.85×1015 molec·cm-2); 而且NO2对流层垂直柱浓度日均值的逐日变化与地面在线观测数据具有良好相关性, 相关系数为0.58。 观测实验期间拉萨市主导风向为西风, 东西方向是大气NO2污染物的传输通道, 这与拉萨城区河谷地形相一致。 观测实验期间NO2对流层垂直柱浓度小时均值的平均日变化呈现“U”型分布, 早晚出现高值, 低值浓度出现在16:00时左右, 但西藏和平解放70周年大庆活动日当天NO2对流层垂直柱浓度的日变化除表现为早晚峰值外, 还在正午12:00时出现峰值, 这与活动结束后道路管控措施解除以及活动保障车辆行驶排放有关。 本研究证实了地基MAX-DOAS遥感观测技术在高原城市拉萨具有很好地适用性, 同时也发现拉萨大气NO2浓度水平变化主要受城市交通排放影响, 西藏和平解放70周年大庆活动当日拉萨对流层大气NO2浓度低。
多轴差分吸收光谱技术 二氧化氮 对流层柱浓度 拉萨 MAX-DOAS NO2 Tropospheric column density Lhasa 
光谱学与光谱分析
2023, 43(6): 1725
张之栋 1谢品华 2,3李昂 4秦敏 4[ ... ]胡峰 1
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026 中国科学院安徽光学与精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
2 张之栋
3 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026 中国科学院安徽光学与精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031中国科学院城市环境研究所中科院城市大气环境卓越中心, 福建 厦门 361021
4 中国科学院安徽光学与精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
5 安徽大学物质科学与信息技术研究院, 安徽 合肥 230039
二氧化硫(SO2)和氮氧化物(NOx)作为大气中重要的一次排放物, 人为活动造成SO2, NOx的过度排放会对生态环境和人体健康产生巨大危害, 2018年环境保护部就规定了“2+26”城市需要执行大气污染物的特别排放限值, 如: 燃煤锅炉排放限值规定的二氧化硫、 氮氧化物均为200 μg·m-3, 因此了解这些城市中SO2和NOx的分布与排放对大气污染防控管制具有重要意义。 唐山市作为“2+26”城市中大气污染最为严重的重工业城市之一, 近年来实施了多项大气污染防治措施, 但空气质量问题仍然严峻。 2021年2月26至3月1日, 使用基于车载差分吸收光谱技术的移动污染气体监测系统对于唐山市区开展了走航观测实验, 获取了走航路径上NOx和SO2的空间立体分布以及走航区域的排放通量。 实验结果表明唐山市一环存在多处NO2高值区域, 均位于车辆较为集中的立交和路口处。 工业园的走航中部分企业存在高NO2、 SO2的排放, 且获取的NO2和SO2VCD均值较高, 分别是一环的1.75~1.99倍和2.21~3.44倍。 结合垂直柱浓度SO2/NO2的比值以及近地面浓度CO/NO2的比值, 并用Pearson相关系数确定SO2和NO2柱浓度以及NO2近地面浓度和柱浓度之间的相关性, 进一步分析不同区域的主要污染源, 结果表明, 一环走航获取的SO2/NO2最低为0.42, CO/NO2最高为10.88, NO2地表与柱浓度之间的相关性r达到0.56, 3月1日丰南工业园区走航中, 获取的SO2/NO2最高为0.81, CO/NO2最低为7.13, SO2与NO2VCD之间有良好的相关性r为0.787, 唐山市一环区域大气污染物以车辆交通尾气排放为主, 丰南工业园区大气污染物来源以工业生产过程中高架点源(烟囱)释放的大量NO2和SO2为主。
空间分布 排放通量 污染源 走航观测 差分吸收光谱 Distribution Emission flux Pollution source Cruise observation Differential optical absorption spectroscopy 
光谱学与光谱分析
2023, 43(5): 1651
张华荣 1,2谢品华 1,2,3,*徐晋 1,**吕寅生 1,2[ ... ]张之栋 1,2
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
3 中国科学院大学,北京 100049
针对快速、高分辨获取CO2排放量并有效识别CO2排放源分布的需求,集成了近红外差分吸收光谱遥测系统,研究了反演CO2浓度信息的近红外差分光学吸收光谱算法,并结合通量算法估算了典型排放源的排放通量。分别选取电厂和合肥市科学岛为观测点,开展了对典型点排放源和复杂背景下面排放源的CO2浓度分布研究,分析了参考光谱的选择对于结果反演的影响,选择背景光谱为参考谱,获取了CO2柱浓度信息,柱浓度反演误差可达到0.79%,并利用双三次插值算法得到了高空间分辨的CO2柱浓度二维浓度分布结果,结合浓度分布结果和观测参数计算了电厂CO2的排放通量为1925 kg,其中测量距离估算误差为主要误差源。初步开展了对合肥市边界层CO2浓度分布的研究,获得了合肥市大气边界层郊区、电厂区和城市区的CO2浓度分布特点,该研究对下一步开展城市温室气体排放的评估具有重要意义,为城市碳排放遥测提供了一种可靠的技术和方法。
光谱学 近红外差分吸收光谱 光学遥测 二氧化碳浓度分布 排放通量 
光学学报
2023, 43(24): 2430004
段明轩 1,*李仕春 1,2刘家辉 1王怡 1[ ... ]高飞 1,2
作者单位
摘要
1 西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
2 陕西省现代装备绿色制造协同创新中心, 陕西 西安 710048
苯作为挥发性有机化合物(VOCs)的重要组成部分, 其大气污染状况日益引起人们的关注, 中红外波段通常是分子的基频指纹吸收区, 已成为痕量气体检测的重要波段, 而差分吸收激光雷达是探测大气痕量气体的重要手段, 故针对区域性苯浓度实时遥感问题, 提出基于中红外带间级联激光器(ICL)的探测大气苯浓度路径积分型差分吸收(IPDA)激光雷达系统。 首先, 在分析IPDA激光雷达的探测原理的基础上, 构建了IPDA激光雷达的反演算法及其误差分析模型。 其次, 详细分析来自HITRAN数据库的中红外3 100 cm-1附近苯以及主要干扰气体(如HCl, CH4和H2O)的吸收光谱, 结合HCl和CH4着重考虑了H2O对探测结果的影响, 选择IPDA激光雷达的测量波长和参考波长分别为3 090.89和3 137.74 cm-1。 再次, 基于两个连续波ICL, 设计了探测大气苯浓度IPDA激光雷达系统, 并可通过控制温度和驱动电流调谐激光器的输出波长, 使其波长分别稳定在强吸收谱区和弱吸收谱区, 并设计了基于中红外衍射光栅的光谱分光子系统, 以实现双波长接收信号的同步探测。 最后, 基于标准大气模型, 仿真分析了不同路径长度、 能见度和水汽浓度情况下激光雷达的探测性能, 并搭建中红外波段检测气体池开展了测试实验, 以验证该IPDA激光雷达系统的可行性。 仿真及实验结果分析表明, 当大气能见度为5 km, 水汽浓度低于0.4%时, 苯的浓度路径积(CL)在0.1~24 mg·m-3·km范围内探测的相对误差优于10%, 而苯的CL为5 mg·m-3·km时探测相对误差优于1%; 初步实验测试了中外红波段差分吸收激光雷达探测的线性相关系数R2约为98.7%。
中红外光谱 激光雷达 差分吸收光谱 苯浓度 Mid-infrared spectroscopy Lidar Differential absorption spectrum Benzene concentration 
光谱学与光谱分析
2023, 43(11): 3351
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 安徽新华学院城市建设学院, 安徽 合肥 230088
发光二极管(LED)发射光谱窄限制了差分吸收光谱反演波段, 难以实现多种气体的同时测量。 采用光纤束组合两种紫外LED形成组合式LED宽带光源, 应用于DOAS系统实现大气SO2和O3的同步探测。 光谱分析显示两种LED灯谱在280~295 nm处发生叠加, 275~301 nm有明显的灯结构。 该灯结构会随着双峰光强比增加而增强, 同时向短波方向漂移。 实际测量时, 外界环境改变会引起两个LED光谱各自独立变化, 且二者发射光谱波段内大气消光存在差异。 这将导致大气吸收光谱的双峰光强比不断变化, 且与灯谱不一致, 二者相除难以抵消灯结构。 光谱反演结果显示宽带光源灯结构为参考谱参与拟合无法较好地扣除干扰。 为扣除测量时LED光谱独立变化对光谱反演的影响, 提出采用各LED独立灯结构作为参考谱参与拟合, 结果显示SO2和O3拟合残差分别由1%、 6‰降低至4‰左右, 扣除效果较好。 该方法与避开干扰结构相比, 拓宽了SO2和O3的反演波段, SO2和O3吸收峰分别增加了1.75倍和1倍, 平均拟合误差分别降低了67.5%和37.3%, 测量精度明显提高。 SO2和O3测量结果与同时段同地区的传统氙灯长光程DOAS系统比较, 结果显示二者保持较高一致性, 相关性系数R高于95%。 结果表明DOAS反演时组合式LED宽带光源灯结构可以通过各LED独立的灯结构来拟合扣除。
差分吸收光谱技术 组合式LED宽带光源 光谱结构扣除 同步探测 Differential optical absorption spectroscopy Combined LED broadband light source Spectral structure removal Simultaneous 
光谱学与光谱分析
2023, 43(11): 3339
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
利用差分吸收光谱技术(DOAS)反演了我国第二代星载大气痕量气体差分吸收光谱仪(EMI-Ⅱ)的SO2斜柱浓度(SCD),并通过辐射传输模型SCIATRAN建立了SO2大气质量因子(AMF)的查找表,经去条带处理后获得SO2的垂直柱浓度(VCD)。以2021年10月底拉帕尔马岛火山区域为研究对象,基于EMI-Ⅱ数据反演的SO2 VCD与国外同类型载荷TROPOMI的结果一致,相关性系数R分别为0.89、0.90、0.92。此外,还将汤加海底火山的SO2反演结果与TROPOMI的监测数据进行对比,结果表明,EMI-Ⅱ观测结果与TROPOMI一致,都观测到此次SO2羽流的自东向西的传输过程。结合风场数据,计算了2022年1月14—15日汤加海底火山爆发产生的SO2排放通量,结果表明,利用EMI-Ⅱ载荷反演的火山区域SO2 VCD可靠性高,可实现全球火山爆发预警。
大气光学 差分吸收光谱 EMI-Ⅱ SO2垂直柱浓度 汤加海底火山 
光学学报
2023, 43(6): 0601006
作者单位
摘要
1 南昌大学资源环境与化工学院, 江西 南昌 330031
2 南昌大学鄱阳湖环境与资源利用教育部重点实验室,江西 南昌 330031
3 东南大学能源与环境学院,江苏 南京 210096
差分吸收光谱(DOAS)技术能够精确实时地监测烟气成分的浓度,是从源头上控制烟气污染物排放的有效手段。在DOAS系统中,光源强度变化是影响测量长期可靠性的重要因素。针对这一问题,提出一个新的光强免校准的DOAS反演算法。该算法利用邻域宽带截面对气体特征吸收的窄带截面进行归一化,从而获得不受光源强度变化影响的等效吸收强度参数αeq(λk),通过比较该参数的测量值与标准截面的计算值,进而可以推算出气体浓度。与传统算法相比,该算法不需要进行多项式拟合、信号滤波等复杂计算,更便于硬件实现。搭建测量系统,用氮气与高浓度NO标气制备不同浓度NO,以NO测量数据为例,结果表明,NO的特征吸收峰只出现在195.5 nm(吸收峰1)、204.7 nm(吸收峰2)、214.8 nm(吸收峰3)、226.2 nm(吸收峰4)等4个位置,且该4个吸收峰的半高全宽均为1 nm左右。采用该算法,特征吸收峰4(226.2 nm)的线性回归决定系数R2达到了0.998 17,验证了新算法的可行性。
差分吸收光谱 反演算法 一氧化氮 免校准 differential absorption spectroscopy inversion algorithm nitric oxide calibration free 
应用激光
2022, 42(4): 140
潘屹峰 1田鑫 1,2谢品华 2,3,4,*李昂 2[ ... ]王子杰 1
作者单位
摘要
1 安徽大学物质科学与信息技术研究院安徽省信息材料与智能传感实验室,安徽 合肥 230601
2 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室,安徽 合肥 230031
3 中国科学院区域大气环境研究卓越创新中心,福建 厦门 361021
4 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
提出一种基于卷积神经网络(CNN)和支持向量回归机(SVR)的多轴差分光学吸收光谱(MAX-DOAS)对流层NO2垂直分布预测方法。将2019年南京站点采集的原始MAX-DOAS数据通过QDOAS软件拟合获取O4和NO2差分斜柱浓度,结合基于最优估算的气溶胶和痕量气体廓线反演算法——PriAM算法反演了对流层NO2廓线,并将其作为预测模型的输出。此外,通过平均影响值方法进行预测模型输入变量的选择,确定了MAX-DOAS数据、温度、气溶胶光学厚度和低云覆盖率为模型的最佳输入变量。通过实验优化网络结构和参数,最终建立预测模型在测试集与PriAM的平均百分比误差仅为9.14%,与单独建立的CNN、SVR、反向传播模型相比,平均百分比误差分别降低了8.22%、6.00%、32.28%。因此,CNN-SVR能够利用MAX-DOAS数据对对流层NO2廓线进行有效预测。
大气光学 卷积神经网络 支持向量回归机 多轴差分吸收光谱 对流层NO2廓线 
光学学报
2022, 42(24): 2401001
作者单位
摘要
1 中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
5 中国环境监测总站, 国家环境保护环境监测质量控制重点实验室, 北京 100012
大气水汽的吸收强度从微波区域到可见蓝光区域逐渐降低, 然而在紫外波段的吸收却经常被人忽略。 多轴差分吸收光谱(MAX-DOAS)技术是一种被动光学遥感技术, 可以同时反演气溶胶、 多种痕量气体(如NO2, SO2, HCHO, HONO等)以及水汽, 常用于区域大气立体分布及输送监测, 具有成本低、 时间分辨率高、 稳定、 可实时监测等特点。 水汽是一种重要的温室气体, 在紫外波段反演一些痕量气体时水汽的吸收经常不被考虑, 可能对紫外波段痕量气体的反演造成影响, 从而产生系统误差。 介绍了基于MAX-DOAS对紫外波段大气水汽的反演, 于2020年6月1日—9月24日在西安乾县进行观测, 通过选取最优反演波段, 并将反演结果与可见蓝光波段的水汽进行对比, 证实了紫外波段存在水汽吸收, 评估了紫外水汽的吸收对同波段痕量气体反演的影响。 首先, 根据不同拟合波段反演的水汽均方根误差(RMS)以及水汽和O4的吸收截面情况, 选取紫外和可见蓝光波段水汽的最优反演波段分别为351~370和434~455 nm。 其次, 通过DOAS拟合得到紫外和可见蓝光波段O4和H2O的对流层差分斜柱浓度(DSCD), 分别将紫外和可见波段的O4 DSCD和H2O DSCD做相关性分析, 两个波段O4 DSCD的相关系数r=0.85, H2O DSCD的相关系数r=0.80。 为消除不同波段的辐射传输差异, 将同波段的H2O DSCD和O4DSCD作比值, 两个波段H2O DSCD/O4DSCD的相关系数r=0.89。 紫外和可见蓝光波段H2O DSCD/O4DSCD的高相关系数表明, 即使在相对沿海城市水汽浓度较低的西安市, 在363 nm附近的紫外波段同样存在水汽吸收, 这将会对采用DOAS技术在紫外波段反演其他痕量气体造成影响。 最后, 分别对可能受紫外波段水汽吸收影响的气体(O4, HONO和HCHO)进行DOAS反演误差评估, 紫外波段水汽的吸收将使O4 DSCD, HONO DSCD以及HCHO DSCD在DOAS拟合过程中增加, 分别对应于+1.16%, +8.55%和+9.04%的变化。
多轴差分吸收光谱 紫外波段 水汽 误差评估 MAX-DOAS Ultraviolet band Water vapor Error evaluation 
光谱学与光谱分析
2022, 42(10): 3314

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!